论文标题
通过简化的$ \ Mathcal {s} $ - 柠檬仪提高实时控制方案的障碍
Improving Tractability of Real-Time Control Schemes via Simplified $\mathcal{S}$-Lemma
论文作者
论文摘要
各种控制方案都依赖于涉及特定稳健二次约束的凸优化问题的解决方案,该解决方案可以使用众所周知的$ \ Mathcal {S} $ -Lemma重新构成线性矩阵不平等。但是,对于需要重复解决此类问题的实时应用程序,解决所得的半决赛程序所需的计算工作可能是非常大的。我们在强大的优化方面使用了一些最新进展,使我们能够将这种强大的约束重新制定为一组线性和二阶锥体约束,这些约束在计算上更适合实时应用程序。一个数字示例表明,可以使用拟议的重新印象获得巨大的加速。
Various control schemes rely on a solution of a convex optimization problem involving a particular robust quadratic constraint, which can be reformulated as a linear matrix inequality using the well-known $\mathcal{S}$-lemma. However, the computational effort required to solve the resulting semidefinite program may be prohibitively large for real-time applications requiring a repeated solution of such a problem. We use some recent advances in robust optimization that allow us to reformulate such a robust constraint as a set of linear and second-order cone constraints, which are computationally better suited to real-time applications. A numerical example demonstrates a huge speedup that can be obtained using the proposed reformulation.