论文标题
电子商务的实时整个页面个性化框架
A Real-Time Whole Page Personalization Framework for E-Commerce
论文作者
论文摘要
电子商务平台始终旨在提供个性化的建议,以推动用户参与度,增强整体用户体验并改善业务指标。大多数电子商务平台在其首页上包含多个旋转木马,每个旋转木马都试图捕获购物体验的不同方面。给定不同的用户偏好,优化这些旋转木马的放置对于提高用户满意度至关重要。此外,轮播中的项目可能会根据顺序的用户操作动态变化,从而需要在线排名旋转木马。在这项工作中,我们提出了一个可扩展的端到端生产系统,可在沃尔玛在线杂货主页上实时对项目库进行最佳排名。拟议的系统采用了一种新型模型,该模型捕获了用户对不同旋转木马的亲和力及其与以前看不见的物品互动的可能性。我们的系统在设计方面具有灵活性,并且很容易扩展到需要对页面组件进行排名的设置。我们提供由模型开发阶段和在线推理框架组成的系统体系结构。为了确保低延迟,实施了这些阶段的各种优化。我们进行了广泛的在线评估,以根据先前的经验进行基准测试。在生产中,我们的系统导致项目发现的改善,在线参与度的增加以及每个访问者在主页上的添加卡(ATC)的大幅提升。
E-commerce platforms consistently aim to provide personalized recommendations to drive user engagement, enhance overall user experience, and improve business metrics. Most e-commerce platforms contain multiple carousels on their homepage, each attempting to capture different facets of the shopping experience. Given varied user preferences, optimizing the placement of these carousels is critical for improved user satisfaction. Furthermore, items within a carousel may change dynamically based on sequential user actions, thus necessitating online ranking of carousels. In this work, we present a scalable end-to-end production system to optimally rank item-carousels in real-time on the Walmart online grocery homepage. The proposed system utilizes a novel model that captures the user's affinity for different carousels and their likelihood to interact with previously unseen items. Our system is flexible in design and is easily extendable to settings where page components need to be ranked. We provide the system architecture consisting of a model development phase and an online inference framework. To ensure low-latency, various optimizations across these stages are implemented. We conducted extensive online evaluations to benchmark against the prior experience. In production, our system resulted in an improvement in item discovery, an increase in online engagement, and a significant lift on add-to-carts (ATCs) per visitor on the homepage.