论文标题

一种基于机器学习的新型优化算法(ACTIVO),用于加速模拟驱动的发动机设计

A novel machine learning-based optimization algorithm (ActivO) for accelerating simulation-driven engine design

论文作者

Owoyele, Opeoluwa, Pal, Pinaki

论文摘要

提出了一种采用机器学习算法集合的新型设计优化方法(Activo)。提出的方法是一种基于替代的方案,在该方案中,在主动学习循环中使用了较弱和强大学习者的预测。较弱的学习者用于识别设计空间内的有希望的区域以探索,而强大的学习者则用于确定最佳区域内最佳位置的确切位置。对于每种设计迭代,探索是通过随机选择弱学习者预测适应性的区域内的评估点来完成的。还评估了通过使用强大的学习者作为替代物获得的全局最优值,一旦确定了最有希望的地区,可以快速收敛。首先,将Activo的性能与余弦混合物功能的其他五个优化器进行了比较,并具有25个本地Optima和一个全局最佳。在第二个问题中,目的是最大程度地减少指示压缩 - 点燃内燃机(IC)发动机的特定燃料消耗,同时遵守与缸内压力和排放相关的所需约束。在这里,将所提出的方法的功效与遗传算法的疗效进行了比较,遗传算法在内燃机社区中广泛用于发动机优化,这表明Activo降低了达到全局最佳最佳功能所需的功能评估数量,从而减少了设计的时间,从而减少了80%的设计。此外,发动机设计参数的优化可节省约1.9%的能源消耗,同时保持可操作性和可接受的污染物排放。

A novel design optimization approach (ActivO) that employs an ensemble of machine learning algorithms is presented. The proposed approach is a surrogate-based scheme, where the predictions of a weak leaner and a strong learner are utilized within an active learning loop. The weak learner is used to identify promising regions within the design space to explore, while the strong learner is used to determine the exact location of the optimum within promising regions. For each design iteration, exploration is done by randomly selecting evaluation points within regions where the weak learner-predicted fitness is high. The global optimum obtained by using the strong learner as a surrogate is also evaluated to enable rapid convergence once the most promising region has been identified. First, the performance of ActivO was compared against five other optimizers on a cosine mixture function with 25 local optima and one global optimum. In the second problem, the objective was to minimize indicated specific fuel consumption of a compression-ignition internal combustion (IC) engine while adhering to desired constraints associated with in-cylinder pressure and emissions. Here, the efficacy of the proposed approach is compared to that of a genetic algorithm, which is widely used within the internal combustion engine community for engine optimization, showing that ActivO reduces the number of function evaluations needed to reach the global optimum, and thereby time-to-design by 80%. Furthermore, the optimization of engine design parameters leads to savings of around 1.9% in energy consumption, while maintaining operability and acceptable pollutant emissions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源