论文标题
使用生成对抗网络模拟MPD检测器处的时间投影室响应
Simulating the Time Projection Chamber responses at the MPD detector using Generative Adversarial Networks
论文作者
论文摘要
高能物理实验在许多任务中都严重依赖详细的检测器仿真模型。运行这些详细的模型通常需要实验可用的明显计算时间。在这项工作中,我们展示了一种新的方法,可以加快NICA加速器复合物MPD实验的时间投影室跟踪器的模拟。我们的方法基于生成的对抗网络 - 一种深度学习技术,允许对一组对象的人群分布进行隐式估算。这种方法使我们可以从原始探测器响应的分布中学习,然后以带电粒子轨道的参数为条件。为了评估所提出的模型的质量,我们将原型集成到MPD软件堆栈中,并证明它产生的高质量事件类似于详细的模拟器,并加快了至少数量级的速度。该原型对检测器内部的响应进行了训练,并且一旦扩展到完整的检测器,就应该准备在物理任务中使用。
High energy physics experiments rely heavily on the detailed detector simulation models in many tasks. Running these detailed models typically requires a notable amount of the computing time available to the experiments. In this work, we demonstrate a new approach to speed up the simulation of the Time Projection Chamber tracker of the MPD experiment at the NICA accelerator complex. Our method is based on a Generative Adversarial Network - a deep learning technique allowing for implicit estimation of the population distribution for a given set of objects. This approach lets us learn and then sample from the distribution of raw detector responses, conditioned on the parameters of the charged particle tracks. To evaluate the quality of the proposed model, we integrate a prototype into the MPD software stack and demonstrate that it produces high-quality events similar to the detailed simulator, with a speed-up of at least an order of magnitude. The prototype is trained on the responses from the inner part of the detector and, once expanded to the full detector, should be ready for use in physics tasks.