论文标题

用于反射组的广义jucys-murphy权重和基质树定理的Coxeter分解

Coxeter factorizations with generalized Jucys-Murphy weights and Matrix Tree theorems for reflection groups

论文作者

Chapuy, Guillaume, Douvropoulos, Theo

论文摘要

我们证明了通用(无案例)公式,用于将Coxeter元素的加权枚举成反射的产物,以在任何生成良好的反射组$ W $中,就相关运营商的频谱,$ W $ -LAPLACIAN而言。这尤其涵盖了所有有限的Coxeter组。本文的结果包括矩阵树和基质森林定理的概括性对反射组的概括,并覆盖减少(最短的长度)以及任意长度因素化。 我们的公式是相对于由$ n $免费标量参数组成的加权系统的选择,并根据抛物线亚组塔的定义。为了研究这样的系统,我们介绍了每个组的Jucys-Murphy元素的一类变体,我们从中定义了虚拟字符的“塔等效”的新概念。一个主要的技术要点是证明问题自然出现在问题中的虚拟字符与$ w $反射表示的外部产品之间的塔等效性。 最后,我们研究了我们引入的$ w $ - 拉普拉斯矩阵如何用于Coxeter Compinatorics的其他问题。我们解释了它如何定义$ W $的树木类似物,以及如何将它们与Coxeter因素联系起来,我们在$ W $的Coxeter数量与其抛物线子亚组的类似物之间提供了新的数字学身份,最后,当$ W $是Weyl群时,我们会生成一个新的,明确的公式,用于相应的根Zonotope的相应量。

We prove universal (case-free) formulas for the weighted enumeration of factorizations of Coxeter elements into products of reflections valid in any well-generated reflection group $W$, in terms of the spectrum of an associated operator, the $W$-Laplacian. This covers in particular all finite Coxeter groups. The results of this paper include generalizations of the Matrix Tree and Matrix Forest theorems to reflection groups, and cover reduced (shortest length) as well as arbitrary length factorizations. Our formulas are relative to a choice of weighting system that consists of $n$ free scalar parameters and is defined in terms of a tower of parabolic subgroups. To study such systems we introduce (a class of) variants of the Jucys-Murphy elements for every group, from which we define a new notion of `tower equivalence' of virtual characters. A main technical point is to prove the tower equivalence between virtual characters naturally appearing in the problem, and exterior products of the reflection representation of $W$. Finally we study how this $W$-Laplacian matrix we introduce can be used in other problems in Coxeter combinatorics. We explain how it defines analogues of trees for $W$ and how it relates them to Coxeter factorizations, we give new numerological identities between the Coxeter number of $W$ and those of its parabolic subgroups, and finally, when $W$ is a Weyl group, we produce a new, explicit formula for the volume of the corresponding root zonotope.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源