论文标题

通过未标记的数据中毒半监督联邦学习:攻击和防御

Poisoning Semi-supervised Federated Learning via Unlabeled Data: Attacks and Defenses

论文作者

Liu, Yi, Yuan, Xingliang, Zhao, Ruihui, Wang, Cong, Niyato, Dusit, Zheng, Yefeng

论文摘要

半监督联邦学习(SSFL)最近由于其实际考虑而引起了很多关注,即客户可能只有未标记的数据。实际上,这些SSFL系统通过将“猜测”标签分配给标记数据附近的未标记数据,以将无监督的问题转换为完全有监督的问题,从而实现了半监督培训。但是,这种半监督训练技术的固有特性创造了新的攻击表面。在本文中,我们发现并揭示了对SSFL的简单而强大的中毒攻击。我们的攻击利用半监督学习的自然特征使该模型被中毒未标记的数据中毒。具体而言,对手只需要插入少数恶意制作的未标记样本(例如,仅数据集的0.1%)即可感染模型性能和错误分类。广泛的案例研究表明,我们的攻击在不同的数据集和常见的半监督学习方法上有效。为了减轻攻击,我们提出了一个防御,即基于最小值优化的客户选择策略,使服务器能够选择持有正确标签信息和高质量更新的客户端。我们的辩护进一步采用了基于质量的聚合规则来加强所选更新的贡献。在不同攻击条件下的评估表明,拟议的防御可以很好地减轻这种未标记的中毒攻击。我们的研究揭示了SSFL对无标记的中毒攻击的脆弱性,并为社区提供了潜在的防御方法。

Semi-supervised Federated Learning (SSFL) has recently drawn much attention due to its practical consideration, i.e., the clients may only have unlabeled data. In practice, these SSFL systems implement semi-supervised training by assigning a "guessed" label to the unlabeled data near the labeled data to convert the unsupervised problem into a fully supervised problem. However, the inherent properties of such semi-supervised training techniques create a new attack surface. In this paper, we discover and reveal a simple yet powerful poisoning attack against SSFL. Our attack utilizes the natural characteristic of semi-supervised learning to cause the model to be poisoned by poisoning unlabeled data. Specifically, the adversary just needs to insert a small number of maliciously crafted unlabeled samples (e.g., only 0.1\% of the dataset) to infect model performance and misclassification. Extensive case studies have shown that our attacks are effective on different datasets and common semi-supervised learning methods. To mitigate the attacks, we propose a defense, i.e., a minimax optimization-based client selection strategy, to enable the server to select the clients who hold the correct label information and high-quality updates. Our defense further employs a quality-based aggregation rule to strengthen the contributions of the selected updates. Evaluations under different attack conditions show that the proposed defense can well alleviate such unlabeled poisoning attacks. Our study unveils the vulnerability of SSFL to unlabeled poisoning attacks and provides the community with potential defense methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源