论文标题

数据依赖于随机平滑

Data-Dependent Randomized Smoothing

论文作者

Alfarra, Motasem, Bibi, Adel, Torr, Philip H. S., Ghanem, Bernard

论文摘要

随机平滑是一种最近的技术,可以在培训中实现最先进的性能,从而确认强大的深度神经网络。虽然平滑的分布家族通常连接到用于认证的规范的选择,但这些分布的参数始终将其视为全局超级参数,而不是与网络认证的输入数据无关。在这项工作中,我们重新访问高斯随机平滑度,并表明可以在每个输入时优化高斯分布的方差,以最大程度地提高构建平滑分类器的认证半径。由于数据依赖性分类器并未直接使用现有方法享受合理的认证,因此我们提出了一个可通过构造认证的依赖性数据依赖性的平滑分类器。这种新方法是通用,无参数且易于实现的。实际上,我们表明,我们的数据依赖框架可以无缝地纳入3种随机平滑方法中,从而导致一致的提高认证精度。当在这些方法的训练程序中使用此框架,然后是数据依赖性认证时,我们比CIFAR10和Imagenet上0.5的最强基线的认证准确性提高了9%和6%。

Randomized smoothing is a recent technique that achieves state-of-art performance in training certifiably robust deep neural networks. While the smoothing family of distributions is often connected to the choice of the norm used for certification, the parameters of these distributions are always set as global hyper parameters independent from the input data on which a network is certified. In this work, we revisit Gaussian randomized smoothing and show that the variance of the Gaussian distribution can be optimized at each input so as to maximize the certification radius for the construction of the smooth classifier. Since the data dependent classifier does not directly enjoy sound certification with existing approaches, we propose a memory-enhanced data dependent smooth classifier that is certifiable by construction. This new approach is generic, parameter-free, and easy to implement. In fact, we show that our data dependent framework can be seamlessly incorporated into 3 randomized smoothing approaches, leading to consistent improved certified accuracy. When this framework is used in the training routine of these approaches followed by a data dependent certification, we achieve 9% and 6% improvement over the certified accuracy of the strongest baseline for a radius of 0.5 on CIFAR10 and ImageNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源