论文标题

质量多样性优化:随机优化的新型分支

Quality-Diversity Optimization: a novel branch of stochastic optimization

论文作者

Chatzilygeroudis, Konstantinos, Cully, Antoine, Vassiliades, Vassilis, Mouret, Jean-Baptiste

论文摘要

传统优化算法搜索一个单个全局最优值,该算法最大化(或最小化)目标函数。多模式优化算法在搜索空间中搜索最高峰,这可能不止一个。质量多样性算法是进化计算工具箱的最新补充,它不仅搜索一组本地Optima,而且还尝试照亮搜索空间。实际上,它们提供了整体观点,即在整个搜索空间中分布高性能的解决方案。多模式优化算法的主要区别在于(1)(1)质量多样性通常在行为空间(或特征空间)中起作用,而不是在基因型(或参数)空间中起作用,并且(2)质量多样性尝试填补整个行为空间,即使适应性景观中的利基也不是高峰。在本章中,我们对质量多样性优化,讨论主要代表性算法以及社区中正在考虑的主要主题进行温和介绍。在整章中,我们还讨论了质量多样性算法的几种成功应用,包括深度学习,机器人技术和增强学习。

Traditional optimization algorithms search for a single global optimum that maximizes (or minimizes) the objective function. Multimodal optimization algorithms search for the highest peaks in the search space that can be more than one. Quality-Diversity algorithms are a recent addition to the evolutionary computation toolbox that do not only search for a single set of local optima, but instead try to illuminate the search space. In effect, they provide a holistic view of how high-performing solutions are distributed throughout a search space. The main differences with multimodal optimization algorithms are that (1) Quality-Diversity typically works in the behavioral space (or feature space), and not in the genotypic (or parameter) space, and (2) Quality-Diversity attempts to fill the whole behavior space, even if the niche is not a peak in the fitness landscape. In this chapter, we provide a gentle introduction to Quality-Diversity optimization, discuss the main representative algorithms, and the main current topics under consideration in the community. Throughout the chapter, we also discuss several successful applications of Quality-Diversity algorithms, including deep learning, robotics, and reinforcement learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源