论文标题

2D动态断裂中的振荡和尖端分解不稳定性:内在材料长度和时间尺度的作用

Oscillatory and tip-splitting instabilities in 2D dynamic fracture: The roles of intrinsic material length and time scales

论文作者

Vasudevan, Aditya, Lubomirsky, Yuri, Chen, Chih-Hung, Bouchbinder, Eran, Karma, Alain

论文摘要

最近的理论和计算进步导致对2D动态断裂中对称性不稳定性的前所未有的理解。这一进度的核心是识别两个固有的,近裂纹长度尺度的尺度 - 非线性弹性长度尺度$ \ ell $和一个耗散长度比例$ξ$ - 在经典的裂纹理论中不存在。特别是,已经表明,在高繁殖速度$ v $上,二维脆性材料的破解会发生振荡不稳定,其波长随$ \ ell $线性变化,并且在更高的传播速度和更大的加载速度下,尖端的不稳定性出现了,并且出现了与实验的同意。在本文中,使用脆性断裂的相位模型,我们证明了振荡不稳定性的以下特性:(i)它也存在于没有近尖端弹性非线性的情况下,即在极限$ \ ell \!\ to \!0 $中,并由耗散长度尺度$ξ$确定了波长。该结果表明,不稳定性至关重要地取决于与裂纹近距离裂纹的固有长度尺度的存在,这与后者是与非线性弹性或耗散有关的无关。 (ii)这是一个超临界的霍夫夫分叉,发作时具有消失的振荡振幅。 (iii)它在很大程度上独立于由耗散时间尺度控制的断裂能$γ(v)$。这些结果证实了2D超高速度裂纹的振荡不稳定性的普遍性。此外,我们还提供了证据,表明超高速度尖端 - 分解不稳定性受裂纹尖端区域内弹性能量传输的限制速率控制。最后,我们详细描述了所采用相位场断裂方法的数值实施方案。

Recent theoretical and computational progress has led to unprecedented understanding of symmetry-breaking instabilities in 2D dynamic fracture. At the heart of this progress resides the identification of two intrinsic, near crack tip length scales -- a nonlinear elastic length scale $\ell$ and a dissipation length scale $ξ$ -- that do not exist in the classical theory of cracks. In particular, it has been shown that at a high propagation velocity $v$, cracks in 2D brittle materials undergo an oscillatory instability whose wavelength varies linearly with $\ell$, and at yet higher propagation velocities and larger loading levels, a tip-splitting instability emerges, both in agreements with experiments. In this paper, using phase-field models of brittle fracture, we demonstrate the following properties of the oscillatory instability: (i) It exists also in the absence of near-tip elastic nonlinearity, i.e. in the limit $\ell\!\to\!0$, with a wavelength determined by the dissipation length scale $ξ$. This result shows that the instability crucially depends on the existence of an intrinsic length scale associated with the breakdown of linear elasticity near crack tips, independently of whether the latter is related to nonlinear elasticity or to dissipation. (ii) It is a supercritical Hopf bifurcation, featuring a vanishing oscillations amplitude at onset. (iii) It is largely independent of the fracture energy $Γ(v)$ that is controlled by a dissipation time scale. These results substantiate the universal nature of the oscillatory instability of ultra-high speed cracks in 2D. In addition, we provide evidence indicating that the ultra-high velocity tip-splitting instability is controlled by the limiting rate of elastic energy transport inside the crack tip region. Finally, we describe in detail the numerical implementation scheme of the employed phase-field fracture approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源