论文标题

稳定和识别随机异步线性时间不变系统

Stability and Identification of Random Asynchronous Linear Time-Invariant Systems

论文作者

Lale, Sahin, Teke, Oguzhan, Hassibi, Babak, Anandkumar, Anima

论文摘要

在许多计算任务和动态系统中,异步和随机化是自然存在的,并且被视为提高速度并降低计算成本的方法,同时损害准确性和收敛速度。在这项工作中,我们显示了随机化和异步对线性动力学系统稳定性的其他好处。我们引入了一种自然模型,用于随机异步线性时间不变(LTI)系统,该系统概括了标准(同步)LTI系统。在此模型中,每个状态变量根据基础系统动力学随机和异步被随机和异步更新。我们研究了随机异步LTI系统的均值稳定性在随机化和异步方面如何变化。令人惊讶的是,我们表明,随机异步LTI系统的稳定性并不暗示或不暗示系统的同步变体的稳定性以及不稳定的同步系统可以通过随机化和/或异步稳定。我们进一步研究了引入模型的特殊情况,即随机LTI系统,其中每个状态元素都以一些固定但未知的概率随机更新。我们使用扩展的Lyapunov方程来精确表征均方稳定性的精确表征对未知随机LTI系统的系统识别问题。对于未知的随机LTI系统,我们提出了一种系统的识别方法来恢复潜在的动力学。给定单个输入/输出轨迹,我们的方法估计了使用收集到的数据的相关矩阵和扩展的Lyapunov方程来控制系统动力学的模型参数,状态变量的更新概率以及噪声协方差。最后,我们从经验上证明,提出的方法始终以最佳速率恢复了基础系统动力学。

In many computational tasks and dynamical systems, asynchrony and randomization are naturally present and have been considered as ways to increase the speed and reduce the cost of computation while compromising the accuracy and convergence rate. In this work, we show the additional benefits of randomization and asynchrony on the stability of linear dynamical systems. We introduce a natural model for random asynchronous linear time-invariant (LTI) systems which generalizes the standard (synchronous) LTI systems. In this model, each state variable is updated randomly and asynchronously with some probability according to the underlying system dynamics. We examine how the mean-square stability of random asynchronous LTI systems vary with respect to randomization and asynchrony. Surprisingly, we show that the stability of random asynchronous LTI systems does not imply or is not implied by the stability of the synchronous variant of the system and an unstable synchronous system can be stabilized via randomization and/or asynchrony. We further study a special case of the introduced model, namely randomized LTI systems, where each state element is updated randomly with some fixed but unknown probability. We consider the problem of system identification of unknown randomized LTI systems using the precise characterization of mean-square stability via extended Lyapunov equation. For unknown randomized LTI systems, we propose a systematic identification method to recover the underlying dynamics. Given a single input/output trajectory, our method estimates the model parameters that govern the system dynamics, the update probability of state variables, and the noise covariance using the correlation matrices of collected data and the extended Lyapunov equation. Finally, we empirically demonstrate that the proposed method consistently recovers the underlying system dynamics with the optimal rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源