论文标题
MHD的有限元方法,可保留能量,交叉热度,磁性螺旋,不可压缩性和$ \ operatatorName {div} b = 0 $
A Finite Element Method for MHD that Preserves Energy, Cross-Helicity, Magnetic Helicity, Incompressibility, and $\operatorname{div} B = 0$
论文作者
论文摘要
我们为不均匀,不可压缩的磁性水力动力学(MHD)构建了一种具有结构的有限元方法和时间步态。该方法可以保留能量,交叉旋转(流体密度恒定),磁性螺旋,质量,总平方密度,刻度不可压缩性和约束$ \ permatatorName {div} b = 0 $ to Machine Precision,无论是在空间和时间上分离的水平。
We construct a structure-preserving finite element method and time-stepping scheme for inhomogeneous, incompressible magnetohydrodynamics (MHD). The method preserves energy, cross-helicity (when the fluid density is constant), magnetic helicity, mass, total squared density, pointwise incompressibility, and the constraint $\operatorname{div} B = 0$ to machine precision, both at the spatially and temporally discrete levels.