论文标题

MHD的有限元方法,可保留能量,交叉热度,磁性螺旋,不可压缩性和$ \ operatatorName {div} b = 0 $

A Finite Element Method for MHD that Preserves Energy, Cross-Helicity, Magnetic Helicity, Incompressibility, and $\operatorname{div} B = 0$

论文作者

Gawlik, Evan S., Gay-Balmaz, François

论文摘要

我们为不均匀,不可压缩的磁性水力动力学(MHD)构建了一种具有结构的有限元方法和时间步态。该方法可以保留能量,交叉旋转(流体密度恒定),磁性螺旋,质量,总平方密度,刻度不可压缩性和约束$ \ permatatorName {div} b = 0 $ to Machine Precision,无论是在空间和时间上分离的水平。

We construct a structure-preserving finite element method and time-stepping scheme for inhomogeneous, incompressible magnetohydrodynamics (MHD). The method preserves energy, cross-helicity (when the fluid density is constant), magnetic helicity, mass, total squared density, pointwise incompressibility, and the constraint $\operatorname{div} B = 0$ to machine precision, both at the spatially and temporally discrete levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源