论文标题

单层MOS2场晶体管中的巨型持续光电导率

Giant persistent photoconductivity in monolayer MoS2 field-effect transistors

论文作者

George, A., Fistul, M. V., Gruenewald, M., Kaiser, D., Lehnert, T., Mupparapu, R., Neumann, C., Hübner, U., Schaal, M., Masurkar, N., Reddy, A. L. M., Staude, I., Kaiser, U., Fritz, T., Turchanin, A.

论文摘要

单层过渡金属二分法(TMD)在超薄电子和光子学中具有许多潜在的应用。基于TMD的设备对光的暴露会产生光载体,从而产生增强的电导率,例如可以有效地使用该光电载体。如果去除照射后光电的电导率持续存在,则该效果称为持续的光导率(PPC)。在这里,我们表明,紫外线(波长= 365 nm)暴露在单层MOS2(ML-MOS2)野外效应晶体管(FET)中诱导了极长的巨型PPC(GPPC),其时间常数约为30天。此外,这种效果导致电导率大大提高至107倍。与以前的研究相反,PPC的起源归因于诸如替代底物或吸附物中的被困电荷之类的内外原因,我们明确地表明,GPPC的范围很大,例如,众多的属性是ML-mos2的本质属性。禁止差距。这一发现得到了基于TMD的FET中电运运输的详细实验和理论研究,以及通过扫描隧道光谱,高分辨率透射电子显微镜和光发光测量的ML-MOS2表征。获得的结果为设备应用中TMD的电子和光学性质的基于缺陷的工程提供了基础。

Monolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effectively used, e.g., in photodetectors. If the photo-enhanced conductivity persists after removal of the irradiation, the effect is known as persistent photoconductivity (PPC). Here we show that ultraviolet light (wavelength = 365 nm) exposure induces an extremely long-living giant PPC (GPPC) in monolayer MoS2 (ML-MoS2) field-effect transistors (FET) with a time constant of ~30 days. Furthermore, this effect leads to a large enhancement of the conductivity up to a factor of 107. In contrast to previous studies in which the origin of the PPC was attributed to extrinsic reasons such as trapped charges in the substrate or adsorbates, we unambiguously show that the GPPC arises mainly from the intrinsic properties of ML-MoS2 such as lattice defects that induce a large amount of localized states in the forbidden gap. This finding is supported by a detailed experimental and theoretical study of the electric transport in TMD based FETs as well as by characterization of ML-MoS2 with scanning tunneling spectroscopy, high-resolution transmission electron microscopy, and photoluminescence measurements. The obtained results provide a basis towards the defect-based engineering of the electronic and optical properties of TMDs for device applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源