论文标题

对尼尔植物运算符的对成对的内核和矩阵的一维交集与Weyr矩阵通勤

Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix

论文作者

Bondarenko, Vitalij M., Futorny, Vyacheslav, Petravchuk, Anatolii P., Sergeichuk, Vladimir V.

论文摘要

I.M. Gelfand和V.A. Ponomarev(1969)证明,对向量空间上的nilpotent运算符进行对nilpotent运算符进行分类的问题包含了对任意的线性运算符的任意t键盘进行分类的问题。此外,它包含分类任意颤抖的表示的问题,因此被认为是绝望的。如果A和B的核的相交是一维的,则我们给出(a,b)的矩阵的简单正常形式。我们证明,如果A的Jordan矩阵是相同大小的Jordan块的直接总和,并且该场的特征为零,则该形式是规范的。

I.M. Gelfand and V.A. Ponomarev (1969) proved that the problem of classifying pairs (A,B) of commuting nilpotent operators on a vector space contains the problem of classifying an arbitrary t-tuple of linear operators. Moreover, it contains the problem of classifying representations of an arbitrary quiver, and so it is considered as hopeless. We give a simple normal form of the matrices of (A,B) if the intersection of kernels of A and B is one-dimensional. We prove that this form is canonical if the Jordan matrix of A is a direct sum of Jordan blocks of the same size and the field is of zero characteristic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源