论文标题

模拟类似于desi的小规模LYMANα森林观测的气流气体

Simulating intergalactic gas for DESI-like small scale Lymanα forest observations

论文作者

Walther, Michael, Armengaud, Eric, Ravoux, Corentin, Palanque-Delabrouille, Nathalie, Yèche, Christophe, Lukić, Zarija

论文摘要

基于SSDS/EBOSS等天空调查的大量类星体光谱的LY $α$森林的测量,可以准确探测物质在小尺度上的分布,从而对宇宙学模型的多种成分提供了重要的约束。从这些测量结果得出的主要摘要统计量是Ly $α$吸收的一维功率谱P1D。然而,P1D的模型预测依赖于昂贵的水平培养基的流体动力学模拟,这是先前分析的限制因素。即将进行的调查(例如DESI)的数据集将在1%级别和探测尺度上推动观察准确性。这种观察性推动任务又有七个准确的模拟,以及对参数空间的更仔细的探索。在这项工作中,我们评估了模拟的鲁棒性和准确性以及用于约束宇宙参数的统计框架。我们介绍了基于网格的仿真代码NYX和基于SPH的代码小工具之间的比较。此外,我们使用NYX代码执行分辨率和盒子大小收敛测试。我们使用高斯工艺仿真方案来减少探索参数空间所需的模拟数量,而无需牺牲模型精度。我们证明了使用模拟eBoss和类似DESI的数据在端到端推理测试中产生无偏参数约束的能力,并且我们主张使用自适应采样方案,而不是使用固定的拉丁超管设计。

Measurements of the Ly$α$ forest based on large numbers of quasar spectra from sky surveys such as SDSS/eBOSS accurately probe the distribution of matter on small scales and thus provide important constraints on several ingredients of the cosmological model. A main summary statistic derived from those measurements is the one-dimensional power spectrum, P1D, of the Ly$α$ absorption. However, model predictions for P1D rely on expensive hydrodynamical simulations of the intergalactic medium, which was the limiting factor in previous analyses. Datasets from upcoming surveys such as DESI will push observational accuracy near the 1%-level and probe even smaller scales. This observational push mandate seven more accurate simulations as well as more careful exploration of parameter space. In this work we evaluate the robustness and accuracy of simulations and the statistical framework used to constrain cosmological parameters. We present a comparison between the grid-based simulation code Nyx and SPH-based code Gadget in the context ofP1D. In addition, we perform resolution and box-size convergence tests using Nyx code. We use a Gaussian process emulation scheme to reduce the number of simulations required for exploration of parameter space without sacrificing the model accuracy. We demonstrate the ability to produce unbiased parameter constraints in an end-to-end inference test using mock eBOSS- and DESI-like data, and we advocate for the usage of adaptive sampling schemes as opposed to using a fixed Latin hypercube design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源