论文标题

身份驱动的深层检测

Identity-Driven DeepFake Detection

论文作者

Dong, Xiaoyi, Bao, Jianmin, Chen, Dongdong, Zhang, Weiming, Yu, Nenghai, Chen, Dong, Wen, Fang, Guo, Baining

论文摘要

到目前为止,DeepFake检测一直以``伪影驱动''的方法为主,并且当图像伪影的类型未知或太难找到伪影时,检测性能显着降低。在这项工作中,我们提出了一种替代方法:身份驱动的深层检测。我们的方法作为输入可疑图像/视频以及目标身份信息(参考图像或视频)。我们输出有关可疑图像/视频中的身份是否与目标身份相同的决定。我们的动机是防止最常见和有害的深爆,这些深层爆炸传播了目标人的虚假信息。基于身份的方法从根本上有所不同,因为它没有试图检测图像伪影。相反,它重点是可疑图像/视频中的身份是否为真。为了促进基于身份的检测的研究,我们提出了一个新的大型数据集``Vox-Deepfake'',其中每个可疑内容与从目标身份的视频中收集的多个参考图像相关联。我们还提供了一个基于基于身份的检测算法,称为“外观”,该算法均可用作较高的训练性的良好性,即在良好的情况下进行良好的研究,以进一步训练。 DeepFake方法,并且在视频退化技术方面非常强大 - 现有检测算法无法实现的性能。

DeepFake detection has so far been dominated by ``artifact-driven'' methods and the detection performance significantly degrades when either the type of image artifacts is unknown or the artifacts are simply too hard to find. In this work, we present an alternative approach: Identity-Driven DeepFake Detection. Our approach takes as input the suspect image/video as well as the target identity information (a reference image or video). We output a decision on whether the identity in the suspect image/video is the same as the target identity. Our motivation is to prevent the most common and harmful DeepFakes that spread false information of a targeted person. The identity-based approach is fundamentally different in that it does not attempt to detect image artifacts. Instead, it focuses on whether the identity in the suspect image/video is true. To facilitate research on identity-based detection, we present a new large scale dataset ``Vox-DeepFake", in which each suspect content is associated with multiple reference images collected from videos of a target identity. We also present a simple identity-based detection algorithm called the OuterFace, which may serve as a baseline for further research. Even trained without fake videos, the OuterFace algorithm achieves superior detection accuracy and generalizes well to different DeepFake methods, and is robust with respect to video degradation techniques -- a performance not achievable with existing detection algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源