论文标题
通过拓扑相似性和数据邻域动力学的持续分析对深神经网络的层间信息相似性评估
Inter-layer Information Similarity Assessment of Deep Neural Networks Via Topological Similarity and Persistence Analysis of Data Neighbour Dynamics
论文作者
论文摘要
通过深神经网络(DNN)对信息结构进行定量分析可以揭示出对DNN体系结构理论性能的新见解。针对定量信息结构分析的研究途径非常有希望的途径:1)层次相似性(LS)策略,专注于层间特征相似性,2)使用成对信息的固有维度(ID)策略(ID)策略(ID)策略。受到定量信息结构分析的LS和ID策略的启发,我们介绍了两种新颖的免费方法,用于研究数据样本的邻域动力学的有趣想法,该方法是在研究中通过DNN遍历DNN的有趣想法。更具体地说,我们介绍了最近的邻居拓扑相似性(NNT)的概念,以量化DNN层之间的信息拓扑相似性。此外,我们介绍了最近的邻居拓扑持久性(NNTP)的概念,以量化整个DNN的数据邻域关系的层间持久性。提出的策略通过仅利用本地拓扑信息来促进有效的层间信息相似性评估,我们通过对图像数据的深层卷积神经网络体系结构进行分析来证明它们在这项研究中的功效,以研究可以根据DNN的理论表现获得的见解。
The quantitative analysis of information structure through a deep neural network (DNN) can unveil new insights into the theoretical performance of DNN architectures. Two very promising avenues of research towards quantitative information structure analysis are: 1) layer similarity (LS) strategies focused on the inter-layer feature similarity, and 2) intrinsic dimensionality (ID) strategies focused on layer-wise data dimensionality using pairwise information. Inspired by both LS and ID strategies for quantitative information structure analysis, we introduce two novel complimentary methods for inter-layer information similarity assessment premised on the interesting idea of studying a data sample's neighbourhood dynamics as it traverses through a DNN. More specifically, we introduce the concept of Nearest Neighbour Topological Similarity (NNTS) for quantifying the information topology similarity between layers of a DNN. Furthermore, we introduce the concept of Nearest Neighbour Topological Persistence (NNTP) for quantifying the inter-layer persistence of data neighbourhood relationships throughout a DNN. The proposed strategies facilitate the efficient inter-layer information similarity assessment by leveraging only local topological information, and we demonstrate their efficacy in this study by performing analysis on a deep convolutional neural network architecture on image data to study the insights that can be gained with respect to the theoretical performance of a DNN.