论文标题
用半经典初始值表示分子动力学代表分子地面和激发振动特征状态
Representing Molecular Ground and Excited Vibrational Eigenstates with Nuclear Densities obtained from Semiclassical Initial Value Representation Molecular Dynamics
论文作者
论文摘要
我们详细介绍并验证了一种有效的蒙特卡洛方法,通过整合分子本征函数来计算核振动密度,我们使用的是初步的,以计算地面的密度和激发的弹性弹性振动态在质子化的甘氨酸分子中[C. C. C. C. Aieta等。 al。纳特。社区。 11,4348(2020)]。在这里,我们首先验证并详细讨论该方法在基准水分子上的特征。然后,我们将其应用于质子化甘氨酸中NH和CH伸展的基本过渡的对应关系,以实现AB的ad算核密度。我们展示了如何通过检查不同的一核密度来获得定性和定量的物理见解,并使用振动状态在谐波基础功能方面使用振动状态扩展为光谱吸收峰分配角色。纯量子图中核振动的可视化使我们能够观察和量化非谐度对分子结构的影响,并利用IR激发对特定键或功能组的影响,超出谐波近似。我们还计算了分子的键长,角度和二脑的量子概率分布。值得注意的是,我们观察到在一种基本的NH中,伸展典型的谐波节点模式在Anharmonic分布中如何不存在。
We present in detail and validate an effective Monte Carlo approach for the calculation of the nuclear vibrational densities via integration of molecular eigenfunctions that we have preliminary employed to calculate the densities of the ground and the excited OH stretch vibrational states in protonated glycine molecule [C. Aieta et. al. Nat. Commun. 11, 4348 (2020)]. Here, we first validate and discuss in detail the features of the method on a benchmark water molecule. Then, we apply it to calculate on-the-fly the ab initio anharmonic nuclear densities in correspondence of the fundamental transitions of NH and CH stretches in protonated glycine. We show how we can gain both qualitative and quantitative physical insight by inspection of different one-nucleus densities and assign a character to spectroscopic absorption peaks using the expansion of vibrational states in terms of harmonic basis functions. The visualization of the nuclear vibrations in a purely quantum picture allows us to observe and quantify the effects of anharmonicity on the molecular structure, and to exploit the effect of IR excitations on specific bonds or functional groups, beyond the harmonic approximation. We also calculate the quantum probability distribution of bond-lengths, angles and dihedrals of the molecule. Notably, we observe how in the case of one type of fundamental NH stretching the typical harmonic nodal pattern is absent in the anharmonic distribution.