论文标题

从经验中学习,以快速生成本地汽车操纵

Learning from Experience for Rapid Generation of Local Car Maneuvers

论文作者

Kicki, Piotr, Gawron, Tomasz, Ćwian, Krzysztof, Ozay, Mete, Skrzypczyński, Piotr

论文摘要

能够通过产生可行的本地路径来快速响应不断变化的场景和交通情况对汽车自主权至关重要。我们建议训练深层神经网络(DNN),以计划在恒定恒定时间内进行运动学约束车辆的可行且几乎最佳的路径。我们的DNN模型是使用一种新颖的弱监督方法和基于梯度的政策搜索培训的。在真实和模拟的场景以及一系列本地计划问题上,我们证明我们的方法在成功完成的任务的数量方面优于现有计划者。虽然路径生成时间约为40毫秒,但生成的路径与从常规路径计划者获得的路径相当。

Being able to rapidly respond to the changing scenes and traffic situations by generating feasible local paths is of pivotal importance for car autonomy. We propose to train a deep neural network (DNN) to plan feasible and nearly-optimal paths for kinematically constrained vehicles in small constant time. Our DNN model is trained using a novel weakly supervised approach and a gradient-based policy search. On real and simulated scenes and a large set of local planning problems, we demonstrate that our approach outperforms the existing planners with respect to the number of successfully completed tasks. While the path generation time is about 40 ms, the generated paths are smooth and comparable to those obtained from conventional path planners.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源