论文标题

LCS图内基于Wasserstein距离的最长常见子序列公制空间的内核

LCS Graph Kernel Based on Wasserstein Distance in Longest Common Subsequence Metric Space

论文作者

Huang, Jianming, Fang, Zhongxi, Kasai, Hiroyuki

论文摘要

对于图形学​​习任务,许多现有方法都利用了通信机制,其中通过邻居信息的汇总对顶点特征进行迭代更新。该策略为图形特征提取提供了有效的手段,但是在许多迭代可能包含其他顶点的信息过多后获得的功能,并且往往彼此相似。这使他们的表现不那么表现力。另一方面,使用路径的学习图可能会对此问题产生不利影响,因为它不涉及所有顶点邻居。但是,其中大多数只能比较具有相同长度的路径,这可能会导致信息损失。为了解决这一难度,我们根据最长的共同子序列(LCS)相似性提出了一个新的图内内核。此外,我们发现,广泛使用的R-convolution框架不适合基于路径的图形内核,因为不同路径之间的大量比较可能会导致图形距离计算。因此,我们通过利用提出的基于LCS的相似性来提出一个新的度量空间,并在此度量空间中计算一个新的基于Wasserstein的图形距离,该图指标距离更强调了相似路径之间的比较。此外,为了降低计算成本,我们提出了一个相邻的点合并操作,以使指标空间中的点云稀疏。

For graph learning tasks, many existing methods utilize a message-passing mechanism where vertex features are updated iteratively by aggregation of neighbor information. This strategy provides an efficient means for graph features extraction, but obtained features after many iterations might contain too much information from other vertices, and tend to be similar to each other. This makes their representations less expressive. Learning graphs using paths, on the other hand, can be less adversely affected by this problem because it does not involve all vertex neighbors. However, most of them can only compare paths with the same length, which might engender information loss. To resolve this difficulty, we propose a new Graph Kernel based on a Longest Common Subsequence (LCS) similarity. Moreover, we found that the widely-used R-convolution framework is unsuitable for path-based Graph Kernel because a huge number of comparisons between dissimilar paths might deteriorate graph distances calculation. Therefore, we propose a novel metric space by exploiting the proposed LCS-based similarity, and compute a new Wasserstein-based graph distance in this metric space, which emphasizes more the comparison between similar paths. Furthermore, to reduce the computational cost, we propose an adjacent point merging operation to sparsify point clouds in the metric space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源