论文标题

用于数值相对性模拟的热核物质状态的微观方程

Microscopic equation of state of hot nuclear matter for numerical relativity simulations

论文作者

Logoteta, Domenico, Perego, Albino, Bombaci, Ignazio

论文摘要

对密集和热物质的状态方程(EOS)的精确理解是建模相对论的天体物理环境的关键,包括核心偏离超新星(CCSNE),Protoneutron Star(PNSS)进化和紧凑型二元合并。在本文中,我们将Bombaci和Logoteta得出的状态核EOS%的微观零温度BL(Bombaci和Logoteta)%核方程式扩展到有限的温度和任意核成分。我们采用这种新的EO来描述热$β$稳定的核物质并计算非旋转PN的各种结构特性。百分比原子星。我们还将EOS应用于球形对称CCSN的动态模拟。使用Brueckner的有限温度扩展(brueckner-hartree-fock近似中)得出EOS。通过求解tolman-oppenheimer-伏尔科夫结构方程来计算中子星的性能。使用敏捷的IDSA代码进行孢子对称的CCSN模拟。我们的EOS模型能够重现PNS和球形对称CCSN模拟的典型特征。此外,我们的EOS模型与当前测量的中子星质量一致,尤其是与质量:$ m = 2.01 \ pm 0.04 \,m _ {\ odot} $,$ m = 2.14^{+0.20} _ { - 0.18} \,m _ _ {\ odot} $ 032和psr+032 $ 03的$ 034343343。 J0740+6620。最后,我们建议一种可行的机制,以产生低质量黑洞($ M \ sim 2M _ {\ odot} $),该机制可能会带来深远的后果,以解释重力波事件GW190814为BH--BH合并。

A precise understanding of the equation of state (EOS) of dense and hot matter is key to modeling relativistic astrophysical environments, including core-collapse supernovae (CCSNe), protoneutron star (PNSs) evolution, and compact binary mergers. In this paper, we extend the microscopic zero-temperature BL (Bombaci and Logoteta) %nuclear equation of state nuclear EOS %derived by Bombaci and Logoteta to finite temperature and arbitrary nuclear composition. We employ this new EOS to describe hot $β$-stable nuclear matter and to compute various structural properties of nonrotating PNS. %protoneutron stars. We also apply the EOS to perform dynamical simulations of a spherically symmetric CCSN. The EOS is derived using the finite temperature extension of the Brueckner--Bethe--Goldstone quantum many-body theory in the Brueckner--Hartree--Fock approximation. Neutron star properties are computed by solving the Tolman--Oppenheimer--Volkoff structure equations numerically. The sperically symmetric CCSN simulations are performed using the AGILE-IDSA code. Our EOS models are able to reproduce typical features of both PNS and spherically symmetric CCSN simulations. In addition, our EOS model is consistent with present measured neutron star masses and particularly with the masses: $M = 2.01 \pm 0.04 \, M_{\odot}$ and $M = 2.14^{+0.20}_{-0.18} \, M_{\odot}$ of the neutron stars in PSR~J0348+0432 and PSR J0740+6620 respectively. Finally, we suggest a feasible mechanism to produce low-mass black holes ($M \sim 2M_{\odot}$) that could have far-reaching consequences for interpreting the gravitational wave event GW190814 as a BH--BH merger.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源