论文标题
与贝叶斯推断协作过滤的概率潜在因素模型
Probabilistic Latent Factor Model for Collaborative Filtering with Bayesian Inference
论文作者
论文摘要
潜在因子模型(LFM)是建议系统中最成功的协作过滤方法之一,其中用户和项目都将投影到联合潜在因子空间中。基于矩阵分解通常在模式识别中应用,LFM模型用户 - 项目作为该空间中用户和项目的因子向量的内部产物,并且可以通过最少的正方形方法有效地解决具有最佳估计的方法。但是,由于用户项目相互作用的极端稀疏性,这种最佳估计方法很容易过度拟合。在本文中,我们提出了针对LFM的贝叶斯治疗,称为贝叶斯潜伏因子模型(BLFM)。基于观察到的用户项目相互作用,我们构建了一个概率因素模型,其中通过对潜在因素放置先前的限制来引入正则化,并且在观察和参数上建立了似然函数。然后,我们从后验分布中绘制潜在因子的样本,并通过变异推理(VI)来预测期望值。我们进一步向BLFM(称为BLFMBIAS)进行扩展,将用户依赖性和项目依赖性偏差纳入模型以增强性能。与几个强大的基线相比,电影评级数据集的广泛实验显示了我们提出的模型的有效性。
Latent Factor Model (LFM) is one of the most successful methods for Collaborative filtering (CF) in the recommendation system, in which both users and items are projected into a joint latent factor space. Base on matrix factorization applied usually in pattern recognition, LFM models user-item interactions as inner products of factor vectors of user and item in that space and can be efficiently solved by least square methods with optimal estimation. However, such optimal estimation methods are prone to overfitting due to the extreme sparsity of user-item interactions. In this paper, we propose a Bayesian treatment for LFM, named Bayesian Latent Factor Model (BLFM). Based on observed user-item interactions, we build a probabilistic factor model in which the regularization is introduced via placing prior constraint on latent factors, and the likelihood function is established over observations and parameters. Then we draw samples of latent factors from the posterior distribution with Variational Inference (VI) to predict expected value. We further make an extension to BLFM, called BLFMBias, incorporating user-dependent and item-dependent biases into the model for enhancing performance. Extensive experiments on the movie rating dataset show the effectiveness of our proposed models by compared with several strong baselines.