论文标题
多次多次不连续的Galerkin IgA,以解决表面上的Biharmonic问题
Multipatch Discontinuous Galerkin IGA for the Biharmonic Problem On Surfaces
论文作者
论文摘要
我们介绍了内部罚款不连续的Galerkin等几何分析(DGIGA)针对可定向表面上的Biharmonic问题的$ω\ subset \ mathbb {r}^3的分析。$在这里,我们考虑了一个由多个非重叠贴片组成的表面,是在乘坐多个dgiga中的典型表面。由于斑块的非重叠性质,我们构建了NURBS近似空间,这些空间是通过惩罚方案在斑块界面上不连续的。通过适当的离散规范,我们提出了\ textIt {先验}误差估计,对非对称,对称和半对称内部惩罚方法进行了错误估计。最后,我们通过数值实验证实了我们的理论结果。
We present the analysis of interior penalty discontinuous Galerkin Isogeometric Analysis (dGIGA) for the biharmonic problem on orientable surfaces $Ω\subset \mathbb{R}^3.$ Here, we consider a surface consisting of several non-overlapping patches as typical in multipatch dGIGA. Due to the non-overlapping nature of the patches, we construct NURBS approximation spaces which are discontinuous across the patch interfaces via a penalty scheme. By an appropriate discrete norm, we present \textit{a priori} error estimates for the non-symmetric, symmetric and semi-symmetric interior penalty methods. Finally, we confirm our theoritical results with numerical experiments.