论文标题

关于人类机器人互动的计划框架内的基于可及性的安全保证

On Infusing Reachability-Based Safety Assurance within Planning Frameworks for Human-Robot Vehicle Interactions

论文作者

Leung, Karen, Schmerling, Edward, Zhang, Mengxuan, Chen, Mo, Talbot, John, Gerdes, J. Christian, Pavone, Marco

论文摘要

动作预期,意图预测和主动行为都是交互式场景中自动驾驶政策的理想特征。但是,派拉蒙(Paramount)正在确保道路上的安全性 - 这样做的一个主要挑战是考虑到人类驾驶员行动的不确定性而不会影响计划者的性能。本文引入了在自动驾驶汽车控制堆栈中运行的微小间隔安全控制器,其作用是确保与外部控制(例如,人类驱动)对应物的无冲突相互作用,同时尊重静态障碍物,例如道路边界壁。我们利用可及性分析来构建一个实时(100Hz)控制器,该控制器具有(i)使用模型预测性控制的高级计划算法跟踪输入轨迹的双重作用,并且(ii)通过保持无碰撞的逃生操作的可用性来确保安全性作为持续的持续约束,无论将来对未来的任何行动都采用了其他任何操作。一个全尺寸的逐个平台用于进行交通编织实验,其中两辆汽车最初是并排的,必须以有限的时间和距离进行交换,并模仿在高速公路上合并到高速公路上的汽车。我们证明,借助我们的控制堆栈,即使另一个汽车违反了计划者的期望并采取危险的行动,自动驾驶汽车也能够避免碰撞,要么粗心或意图碰撞,否则偏离了计划中的轨迹,直到维持安全性所需的范围。

Action anticipation, intent prediction, and proactive behavior are all desirable characteristics for autonomous driving policies in interactive scenarios. Paramount, however, is ensuring safety on the road -- a key challenge in doing so is accounting for uncertainty in human driver actions without unduly impacting planner performance. This paper introduces a minimally-interventional safety controller operating within an autonomous vehicle control stack with the role of ensuring collision-free interaction with an externally controlled (e.g., human-driven) counterpart while respecting static obstacles such as a road boundary wall. We leverage reachability analysis to construct a real-time (100Hz) controller that serves the dual role of (i) tracking an input trajectory from a higher-level planning algorithm using model predictive control, and (ii) assuring safety by maintaining the availability of a collision-free escape maneuver as a persistent constraint regardless of whatever future actions the other car takes. A full-scale steer-by-wire platform is used to conduct traffic weaving experiments wherein two cars, initially side-by-side, must swap lanes in a limited amount of time and distance, emulating cars merging onto/off of a highway. We demonstrate that, with our control stack, the autonomous vehicle is able to avoid collision even when the other car defies the planner's expectations and takes dangerous actions, either carelessly or with the intent to collide, and otherwise deviates minimally from the planned trajectory to the extent required to maintain safety.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源