论文标题
双期问题的存在结果,具体取决于罗宾和斯特克洛夫特征值$ p $ -laplacian
Existence results for double phase problems depending on Robin and Steklov eigenvalues for the $p$-Laplacian
论文作者
论文摘要
在本文中,我们研究了具有非线性边界条件和梯度依赖性的双相问题。在相当普遍的假设下,我们证明存在扰动满足起源和无穷大行为的此类问题的存在。我们的证明利用了各种工具,截断技术和比较方法。获得的解决方案的存在取决于罗宾(Robin)和斯泰克洛夫(Steklov)特征值的第一个特征值,$ p $ laplacian。
In this paper we study double phase problems with nonlinear boundary condition and gradient dependence. Under quite general assumptions we prove existence results for such problems where the perturbations satisfy a suitable behavior in the origin and at infinity. Our proofs make use of variational tools, truncation techniques and comparison methods. The existence of the obtained solutions depends on the first eigenvalues of the Robin and Steklov eigenvalue problems for the $p$-Laplacian.