论文标题
贝叶斯在井测试中进行反卷积的方法
A Bayesian approach to deconvolution in well test analysis
论文作者
论文摘要
在石油井测试分析中,使用反卷积来获取有关储层系统的信息。该信息包含在响应函数中,可以通过解决压力和流量测量中的反问题来估计。我们解决此问题的贝叶斯方法是基于储层行为的参数物理模型,该模型源自一类储层中流体流的解决方案。这允许关节参数贝叶斯对储层参数和真实压力和速率值的推断,这是由于典型的观察误差水平而至关重要的。使用一组灵活的先验储层参数将解决方案空间限制为物理行为,使用MCMC生成后部的样本。可以执行,解释,解释,响应和真实压力和速率值的库参数的摘要和可视化,并可以执行模型选择。该方法通过合成应用程序验证,并应用于字段数据集。结果与最先进的解决方案的状态相媲美,但是通过我们的方法,我们可以访问系统参数,我们可以合并不包括非物理结果的先验知识,并且可以量化参数不确定性。
In petroleum well test analysis, deconvolution is used to obtain information about the reservoir system. This information is contained in the response function, which can be estimated by solving an inverse problem in the pressure and flow rate measurements. Our Bayesian approach to this problem is based upon a parametric physical model of reservoir behaviour, derived from the solution for fluid flow in a general class of reservoirs. This permits joint parametric Bayesian inference for both the reservoir parameters and the true pressure and rate values, which is essential due to the typical levels of observation error. Using a set of flexible priors for the reservoir parameters to restrict the solution space to physical behaviours, samples from the posterior are generated using MCMC. Summaries and visualisations of the reservoir parameters' posterior, response, and true pressure and rate values can be produced, interpreted, and model selection can be performed. The method is validated through a synthetic application, and applied to a field data set. The results are comparable to the state of the art solution, but through our method we gain access to system parameters, we can incorporate prior knowledge that excludes non-physical results, and we can quantify parameter uncertainty.