论文标题

最大熵子空间聚类网络

Maximum Entropy Subspace Clustering Network

论文作者

Peng, Zhihao, Jia, Yuheng, Liu, Hui, Hou, Junhui, Zhang, Qingfu

论文摘要

深度子空间聚类网络在子空间聚类中引起了很多关注,其中自动编码器非线性将输入数据映射到潜在的空间中,并引入了一个名为“自我表达”模块的完全连接的层,以通过典型的正常化项来学习亲和力矩阵(例如,稀疏或低率)。但是,所采用的正规化术语忽略了每个子空间内的连接性,从而限制了它们的聚类性能。此外,所采用的框架还遇到了自动编码器模块与自我表达模块之间的耦合问题,这使网络培训变得非凡。为了解决这两个问题,我们提出了一种新型的深层子空间聚类方法,称为最大熵子空间聚类网络(MESC-NET)。具体而言,MESC-NET最大化了亲和力矩阵的熵,以促进每个子空间内的连接性,在每个子空间中,其与同一子空间相对应的元素均匀且密度分布。此外,我们设计了一个新颖的框架,以显式将自动编码器模块和自表达模块解脱。从理论上讲,我们还证明了学到的亲和力矩阵满足独立子空间下的块对基因属性。对常用基准数据集的广泛定量和定性结果验证MESC-NET显着胜过最先进的方法。

Deep subspace clustering networks have attracted much attention in subspace clustering, in which an auto-encoder non-linearly maps the input data into a latent space, and a fully connected layer named self-expressiveness module is introduced to learn the affinity matrix via a typical regularization term (e.g., sparse or low-rank). However, the adopted regularization terms ignore the connectivity within each subspace, limiting their clustering performance. In addition, the adopted framework suffers from the coupling issue between the auto-encoder module and the self-expressiveness module, making the network training non-trivial. To tackle these two issues, we propose a novel deep subspace clustering method named Maximum Entropy Subspace Clustering Network (MESC-Net). Specifically, MESC-Net maximizes the entropy of the affinity matrix to promote the connectivity within each subspace, in which its elements corresponding to the same subspace are uniformly and densely distributed. Furthermore, we design a novel framework to explicitly decouple the auto-encoder module and the self-expressiveness module. We also theoretically prove that the learned affinity matrix satisfies the block-diagonal property under the independent subspaces. Extensive quantitative and qualitative results on commonly used benchmark datasets validate MESC-Net significantly outperforms state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源