论文标题

深度阿基米德群岛

Deep Archimedean Copulas

论文作者

Ling, Chun Kai, Fang, Fei, Kolter, J. Zico

论文摘要

机器学习和统计数据中的一个核心问题是对数据的随机变量的关节密度进行建模。 Copulas是具有均匀边缘分布的关节累积分布函数,用于捕获与边际分离的相互依赖性。 Copulas被广泛用于统计数据,但在现代深度学习的背景下尚未获得关注。在本文中,我们介绍了ACNET,这是一种新型可区分的神经网络结构,可实施结构性,并使人们能够学习一类重要的Copulas-Archimedean Copulas。与生成的对抗网络,变异自动编码器或直接学习密度或生成过程的归一化流量方法不同,ACNET学习了Copula的生成器,该生成器隐含地定义了关节分布的累积分布函数。我们对ACNET的网络参数进行了概率的解释,并使用它来得出一种简单但有效的采样算法的算法。我们的实验表明,ACNET能够近似于普通的Archimedean Copulas并产生新的Copulas,这可能为数据提供更好的拟合。

A central problem in machine learning and statistics is to model joint densities of random variables from data. Copulas are joint cumulative distribution functions with uniform marginal distributions and are used to capture interdependencies in isolation from marginals. Copulas are widely used within statistics, but have not gained traction in the context of modern deep learning. In this paper, we introduce ACNet, a novel differentiable neural network architecture that enforces structural properties and enables one to learn an important class of copulas--Archimedean Copulas. Unlike Generative Adversarial Networks, Variational Autoencoders, or Normalizing Flow methods, which learn either densities or the generative process directly, ACNet learns a generator of the copula, which implicitly defines the cumulative distribution function of a joint distribution. We give a probabilistic interpretation of the network parameters of ACNet and use this to derive a simple but efficient sampling algorithm for the learned copula. Our experiments show that ACNet is able to both approximate common Archimedean Copulas and generate new copulas which may provide better fits to data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源