论文标题

当前的MD力场未能捕获蛋白质结构和波动的关键特征:环肽A和T4溶菌酶的案例研究

Current MD forcefields fail to capture key features of protein structure and fluctuations: A case study of cyclophilin A and T4 lysozyme

论文作者

Mei, Zhe, Grigas, Alex T., Treado, John D., Corres, Gabriel Melendez, Vuorte, Maisa, Sammalkorpi, Maria, Regan, Lynne, Levine, Zachary A., O'Hern, Corey S.

论文摘要

球状蛋白在溶液中经历热波动,同时保持整体定义明确的折叠结构。特别是,研究表明,当球状蛋白的核心结构通过X射线晶体学与基于溶液的NMR光谱求解时,以较小但重要的方式不同。鉴于这些差异,尚不清楚分子动力学(MD)模拟是否可以准确地概括蛋白质构象。因此,我们在多个力场和采样技术上进行大量的MD模拟,以研究计算机模拟可以捕获实验中观察到的构象合奏的程度。通过分析原子坐标和核心填料中的波动,我们表明,在MD模拟中采样的构象都与NMR实验中观察到的结构集合相比,远离MD模拟并采样了更大的构象空间。但是,我们发现,添加匹配通过核大爆术效应测量值获得的距离距离限制的限制使MD模拟可以采样更类似NMR的构象,尽管限制性MD中的核心包装特征与NMR Ensemble中的核心包装特征之间存在显着差异。鉴于与NMR相比,从MD模拟获得的蛋白质结构具有较小且密度较小的蛋白质核心,我们建议对MD力场的未来改善应旨在增加蛋白质核中疏水残基的包装。

Globular proteins undergo thermal fluctuations in solution, while maintaining an overall well-defined folded structure. In particular, studies have shown that the core structure of globular proteins differs in small, but significant ways when they are solved by x-ray crystallography versus solution-based NMR spectroscopy. Given these discrepancies, it is unclear whether molecular dynamics (MD) simulations can accurately recapitulate protein conformations. We therefore perform extensive MD simulations across multiple force fields and sampling techniques to investigate the degree to which computer simulations can capture the ensemble of conformations observed in experiments. By analyzing fluctuations in the atomic coordinates and core packing, we show that conformations sampled in MD simulations both move away from and sample a larger conformational space than the ensemble of structures observed in NMR experiments. However, we find that adding inter-residue distance restraints that match those obtained via Nuclear Overhauser Effect measurements enables the MD simulations to sample more NMR-like conformations, though significant differences between the core packing features in restrained MD and the NMR ensemble remain. Given that the protein structures obtained from the MD simulations possess smaller and less dense protein cores compared to those solved by NMR, we suggest that future improvements to MD forcefields should aim to increase the packing of hydrophobic residues in protein cores.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源