论文标题
最大和主要理想的近似
Approximations of Maximal and Principal Ideal
论文作者
论文摘要
在本文中,我们将在原则和最大理想中更深入地研究粗糙理论与环理论之间的联系。 Pawlak的粗糙设置理论已显示为在信息系统中建模和处理不完整的信息的良好形式工具。粗糙的理论基于两个概念,给定集的上部近似是所有等价类别的结合,它们是集合的子集,较低的近似值是所有等效类别的结合,它们与集合非空的交点是相交的。许多研究人员发展了这一理论,并在许多领域使用它。在这里,我们将将该定理应用于戒指理论的最重要的数学分支之一。我们将尝试找到粗糙的主体和最大理想,以分别在环理论中分别最大理想的概念的扩展。此外,我们研究主最大理想的上和下近似值的性质。但是,一些研究人员在小组和环理论中使用粗糙的理论。我们的作品是肖的最大和原理理想的最大和原则是理想的最大和原理的扩展。我们的结果将引入粗糙的最大理想,作为经典最大理想的扩展概念,我们研究下部和上近似值的某些特性是最大理想。
In this paper, we will be delving deeper into the connection between the rough theory and the ring theory precisely in the principle and maximal ideal. The rough set theory has shown by Pawlak as good formal tool for modeling and processing incomplete information in information system. The rough theory is based on two concepts the upper approximation of a given set is the union of all the equivalence classes, which are subsets of the set, and the lower approximation is the union of all the equivalence classes, which are intersection with set non-empty. Many researchers develop this theory and use it in many areas. Here, we will apply this theorem in the one of the most important branches of mathematics that is ring theory. We will try to find the rough principal and maximal ideal as an extension of the notion of a principal maximal ideal respectively in ring theory. In addition, we study the properties of the upper and lower approximation of a principal maximal ideal. However, some researchers use the rough theory in the group and ring theory. Our work, is Shaw there are rough maximal and principle ideal as an extension of the maximal and principle ideal respectively. Our result will introduce the rough maximal ideal as an extended notion of a classic maximal ideal and we study some properties of the lower and the upper approximations a maximal ideal.