论文标题
单眼4D面部头像重建的动态神经辐射场
Dynamic Neural Radiance Fields for Monocular 4D Facial Avatar Reconstruction
论文作者
论文摘要
我们提出了动态的神经辐射场,用于建模人脸的外观和动力学。数字建模和重建会说话的人是各种应用的关键建筑块。特别是,对于AR或VR中的远程态度应用,需要对外观进行忠实的复制,包括新的观点或头牙。与明确对几何和材料属性建模或纯粹基于图像的最新方法相反,我们基于场景表示网络引入了头部的隐式表示。为了处理面部的动力学,我们将场景表示网络与低维的形态模型相结合,该模型可明确控制姿势和表达式。我们使用体积渲染来从该混合表示形式中生成图像,并证明只能从单眼输入数据中学到这种动态的神经场景表示,而无需专门的捕获设置。在我们的实验中,我们表明这种学习的体积表示允许拍摄现实的图像生成,超过了基于视频的最新重演方法的质量。
We present dynamic neural radiance fields for modeling the appearance and dynamics of a human face. Digitally modeling and reconstructing a talking human is a key building-block for a variety of applications. Especially, for telepresence applications in AR or VR, a faithful reproduction of the appearance including novel viewpoints or head-poses is required. In contrast to state-of-the-art approaches that model the geometry and material properties explicitly, or are purely image-based, we introduce an implicit representation of the head based on scene representation networks. To handle the dynamics of the face, we combine our scene representation network with a low-dimensional morphable model which provides explicit control over pose and expressions. We use volumetric rendering to generate images from this hybrid representation and demonstrate that such a dynamic neural scene representation can be learned from monocular input data only, without the need of a specialized capture setup. In our experiments, we show that this learned volumetric representation allows for photo-realistic image generation that surpasses the quality of state-of-the-art video-based reenactment methods.