论文标题

等效产生的成对的理想是通勤环的理想

Equivalent generating pairs of an ideal of a commutative ring

论文作者

Guyot, Luc

论文摘要

让$ r $成为具有身份的交换戒指,让$ i $是$ r $的两生的理想。我们用$ \ operatorname {sl} _2(r)$ $ 2 \ times 2 $矩阵$ r $,$ 1 $ 1 $。我们研究了$ \ operatorname {sl} _2(r)$的动作,由矩阵right-multiplication on $ \ permatatorname {v} _2(i)$,$ i $的生成对集。令$ \ operatorname {fitt} _1(i)$为$ i $的第二个拟合理想。我们的主要结果断言,$ \ operatorName {v} _2(i)/\ propatatorName {sl} _2(r)$识别一组$ r/\ operatatorName {fitt} _1(fitt} _1(i)$的单位,如果$ $ $ $ $可以生成两份常规元素。该结果在几个低音环中进行了说明,我们还表明,每$ n> 2 $,$ \ operatorname {sl} _n(r)$在$ \ operatatorName {v} _n(i)$上进行透支。作为一个应用程序,我们在二次顺序上得出一个模块组的尖数的公式。

Let $R$ be a commutative ring with identity and let $I$ be a two-generated ideal of $R$. We denote by $\operatorname{SL}_2(R)$ the group of $2 \times 2$ matrices over $R$ with determinant $1$. We study the action of $\operatorname{SL}_2(R)$ by matrix right-multiplication on $\operatorname{V}_2(I)$, the set of generating pairs of $I$. Let $\operatorname{Fitt}_1(I)$ be the second Fitting ideal of $I$. Our main result asserts that $\operatorname{V}_2(I)/\operatorname{SL}_2(R)$ identifies with a group of units of $R/\operatorname{Fitt}_1(I)$ via a natural generalization of the determinant if $I$ can be generated by two regular elements. This result is illustrated in several Bass rings for which we also show that $\operatorname{SL}_n(R)$ acts transitively on $\operatorname{V}_n(I)$ for every $n > 2$. As an application, we derive a formula for the number of cusps of a modular group over a quadratic order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源