论文标题

机器人导航的概率深度完成的体积占用映射

Volumetric Occupancy Mapping With Probabilistic Depth Completion for Robotic Navigation

论文作者

Popovic, Marija, Thomas, Florian, Papatheodorou, Sotiris, Funk, Nils, Vidal-Calleja, Teresa, Leutenegger, Stefan

论文摘要

在机器人应用中,安全有效的运动计划的关键要求是能够在未知的,混乱的3D环境中绘制无障碍空间的能力。但是,通常用于传感的商品级RGB-D摄像机无法在闪亮,光泽,明亮或遥远的表面上注册有效的深度值,从而导致地图中缺少数据。为了解决此问题,我们提出了一个利用概率深度完成的框架,作为空间映射的附加输入。我们介绍了深度学习架构,为RGB-D图像的深度完成提供了不确定性估计。我们的管道利用了推断的缺少深度值和深度不确定性,以补充原始深度图像并提高自由空间映射的速度和质量。对合成数据的评估表明,与单独在不同的室内环境中单独使用原始数据相比,我们的方法映射更正确的自由空间,误差相对较低;从而产生更多完整的地图,可以直接用于机器人导航任务。使用现实世界数据验证了我们框架的性能。

In robotic applications, a key requirement for safe and efficient motion planning is the ability to map obstacle-free space in unknown, cluttered 3D environments. However, commodity-grade RGB-D cameras commonly used for sensing fail to register valid depth values on shiny, glossy, bright, or distant surfaces, leading to missing data in the map. To address this issue, we propose a framework leveraging probabilistic depth completion as an additional input for spatial mapping. We introduce a deep learning architecture providing uncertainty estimates for the depth completion of RGB-D images. Our pipeline exploits the inferred missing depth values and depth uncertainty to complement raw depth images and improve the speed and quality of free space mapping. Evaluations on synthetic data show that our approach maps significantly more correct free space with relatively low error when compared against using raw data alone in different indoor environments; thereby producing more complete maps that can be directly used for robotic navigation tasks. The performance of our framework is validated using real-world data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源