论文标题
$ k $ - 分段纠缠和$ k $ - 多部分量子状态
Detection of $k$-partite entanglement and $k$-nonseparability of multipartite quantum states
论文作者
论文摘要
确定$ k $ - 分段的纠缠和$ k $ - 一般$ n $ - 分段量子状态是量子信息理论中的基本问题。通过使用非线性运算符的可计算不平等,我们提供了一些简单且功能强大的$ k $ - 明确的纠缠和$ k $ - nosesparbility标准,可以很好地工作,并为$ k $ partite的整个层次结构和$ k $ - $ n $ - $ n $ k $ n $ n $ n $ n $ n $ n $ n troull $ n troull $ n from $ n from $ n frimst $ n fression from to $ n frimst $ n troull fromist ulling to $ n ulling fivers ulling tolling to $ n ulling fivers $ n的简单效果测试。其中我们的标准比其他已知的检测标准更好。我们能够检测到$ k $ - 分段的纠缠和$ k $ -nonseparabilty的多部分系统,这些系统以前尚未确定。此外,我们的结果可以在当今的实验中实现。
Identifying the $k$-partite entanglement and $k$-nonseparability of general $N$-partite quantum states are fundamental issues in quantum information theory. By use of computable inequalities of nonlinear operators, we present some simple and powerful $k$-partite entanglement and $k$-nonseparability criteria that works very well and allow for a simple and inexpensive test for the whole hierarchy of $k$-partite entanglement and $k$-separability of $N$-partite systems with $k$ running from $N$ down to 2. We illustrate their strengths by considering several examples in which our criteria perform better than other known detection criteria. We are able to detect $k$-partite entanglement and $k$-nonseparabilty of multipartite systems which have previously not been identified. In addition, our results can be implemented in today's experiments.