论文标题

一般压力的3D可压缩磁性水力动力学的全球规律性

Global regularity for the 3D compressible magnetohydrodynamics with general pressure

论文作者

Suen, Anthony

论文摘要

我们以$ \ mathbb {r}^3 $中的可压缩磁性水力动力学(MHD)方程来解决,并仅根据密度来为局部强解决方案建立爆破标准。也就是说,如果密度远离真空($ρ= 0 $)和质量的浓度($ρ= \ infty $),则可以在全球范围内及时继续进行局部强溶液。结果在标准中没有磁场的意义上概括并加强了先前的结果,并且对压力的假设显着松弛。该证明基于三维可压缩MHD方程的一些新的A先验估计。

We address the compressible magnetohydrodynamics (MHD) equations in $\mathbb{R}^3$ and establish a blow-up criterion for the local strong solutions in terms of the density only. Namely, if the density is away from vacuum ($ρ= 0$) and the concentration of mass ($ρ=\infty$), then a local strong solution can be continued globally in time. The results generalise and strengthen the previous ones in the sense that there is no magnetic field present in the criterion and the assumption on the pressure is significantly relaxed. The proof is based on some new a priori estimates for three-dimensional compressible MHD equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源