论文标题
临界点附近Chern-Simons波动的实时动态
Real-time dynamics of Chern-Simons fluctuations near a critical point
论文作者
论文摘要
实时拓扑敏感性以$(1+1)$ - 具有$θ$ term的尺寸大型Schwinger模型进行了研究。我们评估了电场的实时相关函数,该函数代表$(1+1)$尺寸的拓扑Chern-Pontryagin数量密度。在$θ=π$和费米昂质量$ m $的均等关键点附近,耦合$ g $ g $比为$ m/g \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \约0.33 $,我们观察到拓扑敏感性的最大值。我们根据临界点附近的临界波动的增长来解释这一最大值,并在大规模的schwinger模型,临界点附近的QCD和居里点附近的铁电器之间绘制类比。
The real-time topological susceptibility is studied in $(1+1)$-dimensional massive Schwinger model with a $θ$-term. We evaluate the real-time correlation function of electric field that represents the topological Chern-Pontryagin number density in $(1+1)$ dimensions. Near the parity-breaking critical point located at $θ=π$ and fermion mass $m$ to coupling $g$ ratio of $m/g \approx 0.33$, we observe a sharp maximum in the topological susceptibility. We interpret this maximum in terms of the growth of critical fluctuations near the critical point, and draw analogies between the massive Schwinger model, QCD near the critical point, and ferroelectrics near the Curie point.