论文标题
最小距离功能的界限
Bounds for the Minimum Distance Function
论文作者
论文摘要
让$ i $是多项式环$ s $中的同质理想。在本文中,我们扩展了对最小距离函数的渐近行为$Δ_i$ $ i $的研究,并为其稳定点$ r_i $提供界限,当$ i $是$ i $是$ f $ pure或无方形的单一理想时。这些界限与$ i $的尺寸和Castelnuovo-Mumford的规律性有关。
Let $I$ be a homogeneous ideal in a polynomial ring $S$. In this paper, we extend the study of the asymptotic behavior of the minimum distance function $δ_I$ of $I$ and give bounds for its stabilization point, $r_I$, when $I$ is an $F$-pure or a square-free monomial ideal. These bounds are related with the dimension and the Castelnuovo--Mumford regularity of $I$.