论文标题

揭示介孔燃料电池催化剂的纳米结构支持耐用,高功率性能

Revealing the Nanostructure of Mesoporous Fuel Cell Catalyst Supports for Durable, High-Power Performance

论文作者

Ko, Matthew, Padgett, Elliot, Yarlagadda, Venkata, Kongkanand, Anusorn, Muller, David A.

论文摘要

对于质子交换膜燃料电池来说,实现高功率性能和耐用性是质子交换膜燃料电池的关键挑战。在新碳黑色支撑物上开发的PTCO催化剂通过同时提供良好的还原氧动力学和局部氧气运输,这表明了希望。我们研究了使用3D电子断层扫描,氮气吸附和电化学性能测量值的传统(HSC-E和HSC-F)和常规(Ketjen Black)多孔碳中支持的这些催化剂(HSC-E和HSC-F)和常规(Ketjen黑色)多孔碳的作用。我们发现,可访问的多孔碳具有空心的内饰,中孔比传统的多孔碳更大,更大。然而,室广播大小的开口(> 2nm的宽度)太罕见了,无法解释明显的氧气运输。取而代之的是,我们提出进入内部的主要氧气传输途径是通过1-2NM微孔通道渗透到碳中。可访问的多孔碳中的介孔性增加导致较短的扩散路径长度通过支撑壳中的紧缩的,曲折的微孔,从而导致局部氧气转运阻力降低。在耐用性测试中,可访问的多孔碳表现出更快的电化学表面积损失速率,这可能是由于减轻缩放的狭窄毛孔的较少,但可以在改善的局部氧气传输中保持寿命末期的高电流密度性能。

Achieving high power performance and durability with low Pt loadings are critical challenges for proton exchange membrane fuel cells. PtCo catalysts developed on new carbon black supports show promise by simultaneously providing good oxygen reduction kinetics and local oxygen transport. We investigate the role of nanoscale morphology in the performance of these catalysts supported on accessible (HSC-e and HSC-f) and conventional (Ketjen Black) porous carbons using 3D electron tomography, nitrogen sorption, and electrochemical performance measurements. We find that the accessible porous carbons have hollow interiors with mesopores that are larger and more numerous than conventional porous carbons. However, mesopore-sized openings (>2nm width) are too rare to account for significant oxygen transport. Instead we propose the primary oxygen transport pathway into the interior is through 1-2nm microporous channels permeating the carbon. The increased mesoporosity in the accessible porous carbons results in a shorter diffusion pathlength through constrictive, tortuous micropores in the support shell leading to lower local oxygen transport resistance. In durability testing, the accessible porous carbons show faster rates of electrochemical surface area loss, likely from fewer constrictive pores that would mitigate coarsening, but maintain superior high current density performance at end of life from the improved local oxygen transport.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源