论文标题
$ h^{\ log} $上的注释:结构属性,二元变体和双线性$ h^1 $ - $ bmo $ mappings
Notes on $H^{\log} $: structural properties, dyadic variants, and bilinear $H^1$-$BMO$ mappings
论文作者
论文摘要
本文专门研究了Bonami,Grellier和Ky引入的Hardy空间$ H^{\ log}(\ Mathbb {r}^d)$。我们提出了一种替代方法,使其与其在$ h^1 $中的功能中的功能相关联的结果,并属于$ h^$ h^$ h^$ h^$ h^$ fog fog,副病毒。我们还指出了Hardy-Littlewood,Zygmund和Stein的经典结果的类似物,以$ h^{\ log} $以及相关的Musielak-Orlicz空间。
This article is devoted to a study of the Hardy space $H^{\log} (\mathbb{R}^d)$ introduced by Bonami, Grellier, and Ky. We present an alternative approach to their result relating the product of a function in the real Hardy space $H^1$ and a function in $BMO$ to distributions that belong to $H^{\log}$ based on dyadic paraproducts. We also point out analogues of classical results of Hardy-Littlewood, Zygmund, and Stein for $H^{\log}$ and related Musielak-Orlicz spaces.