论文标题

用于可构造的Weil滑轮的分类Künneth公式

A categorical Künneth formula for constructible Weil sheaves

论文作者

Hemo, Tamir, Richarz, Timo, Scholbach, Jakob

论文摘要

We prove a Künneth-type equivalence of derived categories of lisse and constructible Weil sheaves on schemes in characteristic $p > 0$ for various coefficients, including finite discrete rings, algebraic field extensions $E \supset \mathbf Q_\ell$, $\ell \ne p$ and their rings of integers $O_E$.我们还考虑了一种用于Indynybyby的滑轮的变体,该变体适用于全球函数场上Shtukas模量堆栈的共同体。

We prove a Künneth-type equivalence of derived categories of lisse and constructible Weil sheaves on schemes in characteristic $p > 0$ for various coefficients, including finite discrete rings, algebraic field extensions $E \supset \mathbf Q_\ell$, $\ell \ne p$ and their rings of integers $O_E$. We also consider a variant for ind-construtible sheaves which applies to the cohomology of moduli stacks of shtukas over global function fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源