论文标题

在发生医疗事故诉讼的情况下,混乱的动态:通过两个进化游戏理论环境的链接扭曲图的拓扑证明

Chaotic dynamics in the presence of medical malpractice litigation: a topological proof via linked twist maps for two evolutionary game theoretic contexts

论文作者

Pireddu, Marina

论文摘要

在目前的工作中,我们重新考虑了Antoci等人的进化游戏理论模型。 (2016,2018)描述了患者与医生之间的相互作用产生的动态结果,其行为受到临床和法律风险的影响。特别是Antoci等。 (2016年)分析了阳性防御医学的情况,而Antoci等人。 (2018)涉及负面防御医学的情况。我们表明,当模型接纳一个非次要中心时,可以通过链接的扭曲图(LTMS)的方法证明与这些系统相关联的Poincaré映射的混乱动力学存在。为了这样的目的,我们在两个框架中利用了类似的理由,即对模型参数的定期依赖性影响中心的位置,并描述与某些医疗干预措施相关的某些风险,其季节性变化是基于季节性变化的。我们还提供了Harvie等人提出的同一模型的生态解释。 (2007年),并与捕食者捕食环境中的种内竞争和环境承载能力有关。在这种情况下,对于携带能力和两个人群的内在增长率都假定季节性变化是明智的。尽管这种参数会影响轨道的形状,但不会影响中心位置,但我们表明,仍然有可能通过使用LTMS技术来证明相关的Poincaré映射的混沌动力学,该技术与相位平面中轨道的不同几何构型有关。

In the present work we reconsider the evolutionary game theoretic models by Antoci et al. (2016, 2018) describing the dynamic outcomes arising from the interactions between patients and physicians, whose behavior is subject to clinical and legal risks. In particular, Antoci et al. (2016) analyzed the case of positive defensive medicine, while Antoci et al. (2018) dealt with the case of negative defensive medicine. We show that, when the models admit a nonisochronous center, it is possible to prove the existence of chaotic dynamics for the Poincaré map associated with those systems via the method of Linked Twist Maps (LTMs). To such aim we exploit in both frameworks, using a similar rationale, the periodic dependence on time of a model parameter influencing the position of the center and describing some risk associated with certain medical interventions, whose seasonal variation is empirically grounded. We also provide the ecological interpretation of the same model, proposed by Harvie et al. (2007) and connected with intraspecific competition and environmental carrying capacity in predator-prey settings. In this case, it is sensible to assume a seasonal variation both for the carrying capacities and for the intrinsic growth rates of the two populations. Although such parameters influence the shape of the orbits, but do not affect the center position, we show that it is still possible to prove the existence of chaotic dynamics for the associated Poincaré map via the LTMs technique dealing with a different geometrical configuration for orbits in the phase plane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源