论文标题
通过热传导,良好的定位和直接内部稳定性基尔chhoff系统耦合
Well-posedness and direct internal stability of coupled non-degenrate Kirchhoff system via heat conduction
论文作者
论文摘要
在所研究的论文中,我们考虑以下耦合的非脱位Kirchhoff System \ begin {equation} \ label {p} \ left \ left \ {\ begin {aligned}&\ displaystyle y_ { +\upalphaΔ\ upTheta = 0,&\ mbox {in}&\; ω\ times(0, +\ infty)\\&\ displayStyle \ upTheta_t-δ\ upTheta- \upbetaΔy_t= 0,&\ mbox {in}&\; ω\ times(0, +\ infty)\\&\ displaystyle y = \ uptheta = 0,\; &\ mbox {on}&\; \partialΩ\ times(0, +\ infty)\\%&\ displayStyle y = 0,\; &\ mbox {on}&\; \partialΩ\ times(0, +\ infty)\\%&\ displayStyle \partial_νy= 0,&\ mbox {on}&g;γ_1\ times(0, +\ iffty) y_t(\ cdot,0)= y_1,\; \ uptheta(\ cdot,0)= \ upTheta_0,\; \; &\ mbox {in}&\; ω\\ \ end {Aligned} \ right。 \ end {equation}其中$ω$是$ \ mathbb {r}^n $,$ \ upalpha $和$ \ upbeta $的有限开放子集,是两个非零实数,具有相同的符号和$ \ upvarphi $由$ \ upvarphi $给出\ Mathfrak {M} _0+\ \ \ \ m} _1s $带有某些正常数$ \ mathfrak {M} _0 $和$ \ Mathfrak {M} _1 $。 因此,我们证明了解决方案的存在并确定其指数衰减。所使用的方法基于乘数技术和由于Haraux和Komornik \ Cite {H1,KOM}而引起的一些积分不等式。
In the paper under study, we consider the following coupled non-degenerate Kirchhoff system \begin{equation}\label{P} \left \{ \begin{aligned} &\displaystyle y_{tt}-\upvarphi\Big(\int_Ω| \nabla y |^2\,dx\Big)Δy +\upalpha Δ\uptheta=0, &\mbox{ in }&\; Ω\times (0, +\infty)\\ &\displaystyle \uptheta_t-Δ\uptheta-\upbeta Δy_t =0, &\mbox{ in }&\; Ω\times (0, +\infty)\\ &\displaystyle y=\uptheta=0,\; &\mbox{ on }&\;\partialΩ\times(0, +\infty)\\ %&\displaystyle y=0,\; &\mbox{ on }&\;\partialΩ\times(0, +\infty)\\ %&\displaystyle \partial_νy=0, &\mbox{ on }&\;Γ_1\times(0, +\infty)\\ &\displaystyle y(\cdot, 0)=y_0, \; y_t(\cdot, 0)=y_1,\;\uptheta(\cdot, 0)=\uptheta_0, \; \; &\mbox{ in }&\; Ω\\ \end{aligned} \right. \end{equation} where $Ω$ is a bounded open subset of $\mathbb{R}^n$, $\upalpha$ and $\upbeta$ be two nonzero real numbers with the same sign and $\upvarphi$ is given by $\upvarphi(s)= \mathfrak{m}_0+\mathfrak{m}_1s$ with some positive constants $\mathfrak{m}_0$ and $\mathfrak{m}_1$. So we prove existence of solution and establish its exponential decay. The method used is based on multiplier technique and some integral inequalities due to Haraux and Komornik\cite{H1,KOM}.