论文标题
模型植物不匹配学习无偏移模型预测性控制
Model-plant mismatch learning offset-free model predictive control
论文作者
论文摘要
我们建议学习和应用内在的模型 - 植物不匹配,以有效利用基于模型和数据驱动的控制策略的优势并克服每种方法的局限性。在这项研究中,通过从每个设定点的稳态数据,通过通用回归神经网络近似稳态歧管上的模型植物不匹配图近似。尽管学到的模型植物不匹配图可以在均衡点(即设定点)提供信息,但在瞬态状态下无法提供模型植物不匹配信息。此外,由于系统特性在操作过程中的变化,固有的模型植物不匹配可能会有所不同。因此,我们还采用了补充干扰变量,该变量将根据名义无偏移MPC方案从干扰估计器进行更新。然后,将组合的干扰信号应用于目标问题和有限的无抵消MPC的最佳控制问题,以提高控制器的预测准确性和闭环性能。这样,我们可以利用学到的模型植物不匹配信息和名义扰动估计器方法的稳定属性。闭环模拟结果表明,开发的方案可以正确学习内在的模型植物不匹配,并有效地改善了模型植物不匹配的不匹配补偿性能。此外,我们通过利用学习的模型植物不匹配信息来研究开发的无偏移MPC方案的鲁棒渐近稳定性,该方案已知,该方案很难在无标准的无偏移MPC中进行分析。
We propose model-plant mismatch learning offset-free model predictive control (MPC), which learns and applies the intrinsic model-plant mismatch, to effectively exploit the advantages of model-based and data-driven control strategies and overcome the limitations of each approach. In this study, the model-plant mismatch map on steady-state manifold in the controlled variable space is approximated via a general regression neural network from the steady-state data for each setpoint. Though the learned model-plant mismatch map can provide the information at the equilibrium point (i.e., setpoint), it cannot provide model-plant mismatch information during the transient state. Moreover, the intrinsic model-plant mismatch can vary due to system characteristics changes during operation. Therefore, we additionally apply a supplementary disturbance variable which is updated from the disturbance estimator based on the nominal offset-free MPC scheme. Then, the combined disturbance signal is applied to the target problem and finite-horizon optimal control problem of offset-free MPC to improve the prediction accuracy and closed-loop performance of the controller. By this, we can exploit both the learned model-plant mismatch information and the stabilizing property of the nominal disturbance estimator approach. The closed-loop simulation results demonstrate that the developed scheme can properly learn the intrinsic model-plant mismatch and efficiently improve the model-plant mismatch compensating performance in offset-free MPC. Moreover, we examine the robust asymptotic stability of the developed offset-free MPC scheme, which is known to be difficult to analyze in nominal offset-free MPC, by exploiting the learned model-plant mismatch information.