论文标题
量子通道纠缠的一声操纵
One-shot manipulation of entanglement for quantum channels
论文作者
论文摘要
我们表明,量子纠缠的动态资源理论可以使用超通道理论提出。在此公式中,我们确定可分离的频道和一类免费的超级通道,这些渠道将通道可分离性作为免费资源,并选择交换渠道作为动态纠缠黄金单元。我们的第一个结果是,在自由超级通道下,两部分量子通道的单发动态纠缠成本受通道的标准对数固定性的界定。发现自由超级通道下的两分量子通道的单发蒸馏动态纠缠被发现是由我们从可分离通道上最小化的通道的假设检测相对熵构建的资源单调的界定。我们还解决了较大的自由超通道下的两分量子通道的单发催化动态纠缠成本,这些量子通道可能会产生动态纠缠,而动态纠缠在渐近上可以忽略不计;它受通道的广义对数固定性的界定。
We show that the dynamic resource theory of quantum entanglement can be formulated using the superchannel theory. In this formulation, we identify the separable channels and the class of free superchannels that preserve channel separability as free resources, and choose the swap channels as dynamic entanglement golden units. Our first result is that the one-shot dynamic entanglement cost of a bipartite quantum channel under the free superchannels is bounded by the standard log-robustness of channels. The one-shot distillable dynamic entanglement of a bipartite quantum channel under the free superchannels is found to be bounded by a resource monotone that we construct from the hypothesis-testing relative entropy of channels with minimization over separable channels. We also address the one-shot catalytic dynamic entanglement cost of a bipartite quantum channel under a larger class of free superchannels that could generate the dynamic entanglement which is asymptotically negligible; it is bounded by the generalized log-robustness of channels.