论文标题
$ f(r)$重力通过karmarkar条件中的可穿越的虫洞解决方案
Traversable Wormhole Solutions in $f(R)$ Gravity Via Karmarkar Condition
论文作者
论文摘要
通过最近可能的虫洞形状功能的建议,我们通过采用静态遍历的虫孔几何形状来构建虫洞形状功能。所提出的形状函数会产生虫洞几何形状,该几何形状连接两个时空的渐近平坦区域并满足所需条件。此外,我们讨论了三维欧几里得空间中的嵌入图,以呈现虫洞构型。当前研究的主要特征是考虑三种众所周知的$ F(R)$重力模型,即指数重力模型,Starobinsky重力模型和Tsujikawa $ F(R)$ GREATITY模型。此外,我们调查我们提出的形状功能提供了虫洞溶液的较少(或可能可以忽略不计)的外来物质,与适当选择的$ f(r)$重力模型和合适的自由参数值相对应。有趣的是,在$ f(r)$ gravity中,在不存在的定理的背景下,为此形状函数获得的解决方案会产生稳定的静态球形对称虫孔结构。这可能会导致在其他修饰的重力中更好地分析虫洞溶液,以提供建议的形状功能。
Motivated by recent proposals of possible wormhole shape functions, we construct a wormhole shape function by employing the Karmarkar condition for static traversable wormhole geometry. The proposed shape function generates wormhole geometry that connects two asymptotically flat regions of spacetime and satisfies the required conditions. Further, we discuss the embedding diagram in three-dimensional Euclidean space to present the wormhole configurations. The main feature of current study is to consider three well-known $f(R)$ gravity models, namely exponential gravity model, Starobinsky gravity Model and Tsujikawa $f(R)$ gravity model. Moreover, we investigate that our proposed shape function provides the wormhole solutions with less (or may be negligible) amount of exotic matter corresponding to the appropriate choice of $f(R)$ gravity models and suitable values of free parameters. Interestingly, the solutions obtained for this shape function generate stable static spherically symmetric wormhole structure in the context of non-existence theorem in $f(R)$ gravity. This may lead to a better analytical representation of wormhole solutions in other modified gravities for the suggested shape function.