论文标题

点线涵盖问题的近乎最佳算法

Near-Optimal Algorithms for Point-Line Covering Problems

论文作者

Chen, Jianer, Huang, Qin, Kanj, Iyad, Xia, Ge

论文摘要

我们研究了涵盖计算几何学问题的基本点线,其中输入是飞机上的一组$ s $。首先是Rich Lines问题,它要求给定整数参数$λ\ geq 2 $,每个线路覆盖至少覆盖至少$λ$点的所有线路;这个问题包含在线问题和确切的拟合问题,后者 - 要求一条包含最大点数的行。第二个是NP硬问题线盖,该封面要求给定参数$ k \ in \ mathbb {n} $,要求一组覆盖$ s $点的$ k $行。这两个问题都已进行了广泛的研究。特别是,丰富的线问题是一个基本问题,其解决方案是计算几何形状中多种算法的基础。 对于丰富的线条和精确的拟合,我们提出了一种随机的蒙特卡洛算法,该算法的运行时间比Guibas等人的算法低的运行时间[Computitation Geetometry 1996],用于广泛的参数$λ$。我们得出较低的结果,表明,对于$λ=ω(\ sqrt {n \ log n})$,该随机算法的运行时间上的上限与我们在代数计算树模型中丰富线路的时间复杂性中得出的下限匹配。 对于线条覆盖,我们提出了两种内核化算法:一种随机的蒙特卡洛算法和确定性算法。两种算法都改善了线条覆盖的现有内核化算法的运行时间。我们得出较低的结果,表明我们提出的随机算法的运行时间接近我们在代数计算树模型中线覆盖的核心化算法的时间复杂性中得出的下限。

We study fundamental point-line covering problems in computational geometry, in which the input is a set $S$ of points in the plane. The first is the Rich Lines problem, which asks for the set of all lines that each covers at least $λ$ points from $S$, for a given integer parameter $λ\geq 2$; this problem subsumes the 3-Points-on-Line problem and the Exact Fitting problem, which -- the latter -- asks for a line containing the maximum number of points. The second is the NP-hard problem Line Cover, which asks for a set of $k$ lines that cover the points of $S$, for a given parameter $k \in \mathbb{N}$. Both problems have been extensively studied. In particular, the Rich Lines problem is a fundamental problem whose solution serves as a building block for several algorithms in computational geometry. For Rich Lines and Exact Fitting, we present a randomized Monte Carlo algorithm that achieves a lower running time than that of Guibas et al.'s algorithm [Computational Geometry 1996], for a wide range of the parameter $λ$. We derive lower-bound results showing that, for $λ=Ω(\sqrt{n \log n})$, the upper bound on the running time of this randomized algorithm matches the lower bound that we derive on the time complexity of Rich Lines in the algebraic computation trees model. For Line Cover, we present two kernelization algorithms: a randomized Monte Carlo algorithm and a deterministic algorithm. Both algorithms improve the running time of existing kernelization algorithms for Line Cover. We derive lower-bound results showing that the running time of the randomized algorithm we present comes close to the lower bound we derive on the time complexity of kernelization algorithms for Line Cover in the algebraic computation trees model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源