论文标题
使用PHD滤波器使用多个四键式分散的多目标跟踪
Decentralized Multi-target Tracking with Multiple Quadrotors using a PHD Filter
论文作者
论文摘要
我们考虑了一个方案,其中一组四肢的任务是在未知的,有限的环境中跟踪多个固定目标。二次搜索沿环境覆盖的空间网格搜索目标,同时以离散时间离散状态(DTDS)Markov链对该网格进行随机步行。四四个可以将目标位置的估计值传输到占据其当前位置在网格上的其他四型。因此,他们的通信网络是随时间变化的,不一定是连接的。我们将搜索过程建模为基础DTDS马尔可夫链上的更新回报过程。为了适应每个四型探索环境时观察到的目标集的变化,以及四四个目标测量值的不确定性,我们根据随机有限集(RFS)来提出跟踪问题。四四个使用基于RFS的概率假设密度(PHD)过滤器来估计目标及其位置的数量。我们根据PHD过滤器的高斯混合物公式提出了一个理论估计框架,并初步模拟结果将基于RFS的多目标跟踪的现有方法扩展到分散的多目标跟踪的分散的多机器人策略。我们通过模拟具有不同密度的机器人和目标的多目标跟踪方案来验证这种方法,并评估机器人在每种方案中达成共识的平均时间。
We consider a scenario in which a group of quadrotors is tasked at tracking multiple stationary targets in an unknown, bounded environment. The quadrotors search for targets along a spatial grid overlaid on the environment while performing a random walk on this grid modeled by a discrete-time discrete-state (DTDS) Markov chain. The quadrotors can transmit their estimates of the target locations to other quadrotors that occupy their current location on the grid; thus, their communication network is time-varying and not necessarily connected. We model the search procedure as a renewal-reward process on the underlying DTDS Markov chain. To accommodate changes in the set of targets observed by each quadrotor as it explores the environment, along with uncertainties in the quadrotors' measurements of the targets, we formulate the tracking problem in terms of Random Finite Sets (RFS). The quadrotors use RFS-based Probability Hypothesis Density (PHD) filters to estimate the number of targets and their locations. We present a theoretical estimation framework, based on the Gaussian Mixture formulation of the PHD filter, and preliminary simulation results toward extending existing approaches for RFS-based multi-target tracking to a decentralized multi-robot strategy for multi-target tracking. We validate this approach with simulations of multi-target tracking scenarios with different densities of robots and targets, and we evaluate the average time required for the robots in each scenario to reach agreement on a common set of targets.