论文标题

使用图神经网络和深层算法展开的有效电源分配

Efficient power allocation using graph neural networks and deep algorithm unfolding

论文作者

Chowdhury, Arindam, Verma, Gunjan, Rao, Chirag, Swami, Ananthram, Segarra, Santiago

论文摘要

我们研究了单跳临时无线网络中最佳功率分配的问题。在解决此问题时,我们提出了一种由迭代加权最小平方误差(WMMSE)方法的算法展开启发的混合神经结构,我们将其表示为展开的WMMSE(UWMMSE)。 UWMMSE中的可学习权重使用图形神经网络(GNN)进行参数化,其中随时间变化的基础图由无线网络中的褪色干扰系数给出。这些GNN是根据电力分配问题的多个实例通过梯度下降方法训练的。一旦受过训练,UWMMSE就可以达到与WMMSE相当的性能,同时显着降低了计算复杂性。通过数值实验以及对不同密度和大小的无线网络的鲁棒性和概括来说明这种现象。

We study the problem of optimal power allocation in a single-hop ad hoc wireless network. In solving this problem, we propose a hybrid neural architecture inspired by the algorithmic unfolding of the iterative weighted minimum mean squared error (WMMSE) method, that we denote as unfolded WMMSE (UWMMSE). The learnable weights within UWMMSE are parameterized using graph neural networks (GNNs), where the time-varying underlying graphs are given by the fading interference coefficients in the wireless network. These GNNs are trained through a gradient descent approach based on multiple instances of the power allocation problem. Once trained, UWMMSE achieves performance comparable to that of WMMSE while significantly reducing the computational complexity. This phenomenon is illustrated through numerical experiments along with the robustness and generalization to wireless networks of different densities and sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源