论文标题
在开放的Toda链上,外部强迫
On the open Toda chain with external forcing
论文作者
论文摘要
我们考虑带有外部强迫的开放式TODA链,在强迫延伸系统时,我们得出了链条解决方案的长期行为。然后,使用JürgenMoser的观察,我们表明该系统是完全可集成的,因为$ 2N $二维系统具有$ N $在功能上独立的Poisson通勤积分,并且具有Lax-Pair配方。此外,我们为流量构建动作角度变量。在强迫压缩系统的情况下,对流的分析保持开放。
We consider the open Toda chain with external forcing, and in the case when the forcing stretches the system, we derive the longtime behavior of solutions of the chain. Using an observation of Jürgen Moser, we then show that the system is completely integrable, in the sense that the $2N$-dimensional system has $N$ functionally independent Poisson commuting integrals, and also has a Lax-Pair formulation. In addition, we construct action-angle variables for the flow. In the case when the forcing compresses the system, the analysis of the flow remains open.