论文标题

雷达伪影标记框架(RALF):数据集中合理雷达检测的方法

Radar Artifact Labeling Framework (RALF): Method for Plausible Radar Detections in Datasets

论文作者

Isele, Simon T., Schilling, Marcel P., Klein, Fabian E., Saralajew, Sascha, Zoellner, J. Marius

论文摘要

关于自主驾驶的本地化和感知的研究主要集中在摄像机和激光雷达数据集上,这很少在雷达数据上。手动标记稀疏雷达点云是具有挑战性的。对于数据集生成,我们提出了交叉传感器雷达伪影标记框架(RALF)。自动生成的用于汽车雷达数据的标签有助于治愈雷达缺点,例如用于应用人工智能的工件。 RALF为雷达原始检测提供了合理的标签,区分伪影和目标。光学评估主干由周围摄像机和激光扫描的广义单眼深度图像估计组成。现代汽车传感器组的相机和激光镜头可以在重叠的传感区域校准基于图像的相对深度信息。匹配的K-Nearest邻居将光学感知点云与原始雷达检测联系起来。同时,时间跟踪评估零件认为雷达检测的瞬态行为。基于匹配之间的距离,尊重传感器和模型不确定性,我们提出了每个雷达检测的合理性额定值。我们通过评估$ 3.28 \ cdot10^6 $点的半手册地面真相数据集上的错误指标来验证结果。除了生成合理的雷达检测外,该框架还可以进一步标记为低级雷达信号数据集,用于感知和自主驾驶学习任务的应用。

Research on localization and perception for Autonomous Driving is mainly focused on camera and LiDAR datasets, rarely on radar data. Manually labeling sparse radar point clouds is challenging. For a dataset generation, we propose the cross sensor Radar Artifact Labeling Framework (RALF). Automatically generated labels for automotive radar data help to cure radar shortcomings like artifacts for the application of artificial intelligence. RALF provides plausibility labels for radar raw detections, distinguishing between artifacts and targets. The optical evaluation backbone consists of a generalized monocular depth image estimation of surround view cameras plus LiDAR scans. Modern car sensor sets of cameras and LiDAR allow to calibrate image-based relative depth information in overlapping sensing areas. K-Nearest Neighbors matching relates the optical perception point cloud with raw radar detections. In parallel, a temporal tracking evaluation part considers the radar detections' transient behavior. Based on the distance between matches, respecting both sensor and model uncertainties, we propose a plausibility rating of every radar detection. We validate the results by evaluating error metrics on semi-manually labeled ground truth dataset of $3.28\cdot10^6$ points. Besides generating plausible radar detections, the framework enables further labeled low-level radar signal datasets for applications of perception and Autonomous Driving learning tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源