论文标题

Patch2Pix:Epolar引导的像素级对应关系

Patch2Pix: Epipolar-Guided Pixel-Level Correspondences

论文作者

Zhou, Qunjie, Sattler, Torsten, Leal-Taixe, Laura

论文摘要

用于视觉本地化的经典匹配管道通常涉及三个步骤:(i)本地特征检测和描述,(ii)特征匹配和(iii)异常排斥。最近出现的通信网络建议在单个网络内执行这些步骤,但由于内存瓶颈而导致匹配分辨率低。在这项工作中,我们提出了一种新的观点,以检测到refine的方式估算对应关系,在这里我们首先预测补丁级匹配建议,然后对它们进行完善。我们提出了Patch2Pix,这是一个新颖的改进网络,通过回归这些建议定义的本地区域的像素级匹配和共同拒绝具有置信度得分的离群匹配,从而完善了匹配建议。 Patch2Pix被薄弱地监督,以学习与输入图像对的表现几何形状一致的对应关系。我们表明,我们的改进网络可显着提高图像匹配,同型估计和本地化任务的对应网络的性能。此外,我们表明我们的学习精炼将概括为完全监督的方法而无需重新训练,这使我们提高了最新的本地化性能。该代码可在https://github.com/grumpyzhou/patch2pix上找到。

The classical matching pipeline used for visual localization typically involves three steps: (i) local feature detection and description, (ii) feature matching, and (iii) outlier rejection. Recently emerged correspondence networks propose to perform those steps inside a single network but suffer from low matching resolution due to the memory bottleneck. In this work, we propose a new perspective to estimate correspondences in a detect-to-refine manner, where we first predict patch-level match proposals and then refine them. We present Patch2Pix, a novel refinement network that refines match proposals by regressing pixel-level matches from the local regions defined by those proposals and jointly rejecting outlier matches with confidence scores. Patch2Pix is weakly supervised to learn correspondences that are consistent with the epipolar geometry of an input image pair. We show that our refinement network significantly improves the performance of correspondence networks on image matching, homography estimation, and localization tasks. In addition, we show that our learned refinement generalizes to fully-supervised methods without re-training, which leads us to state-of-the-art localization performance. The code is available at https://github.com/GrumpyZhou/patch2pix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源